1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
\newfam\rsfs
\newfam\bbold
\def\scr#1{{\fam\rsfs #1}}
\def\bb#1{{\fam\bbold #1}}
\let\oldcal\cal
\def\cal#1{{\oldcal #1}}
\font\rsfsten=rsfs10
\font\rsfssev=rsfs7
\font\rsfsfiv=rsfs5
\textfont\rsfs=\rsfsten
\scriptfont\rsfs=\rsfssev
\scriptscriptfont\rsfs=\rsfsfiv
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\def\Pr{\bb P}
\def\E{\bb E}
\newcount\qnum
\def\q{\afterassignment\qq\qnum=}
\def\qq{\qqq{\number\qnum}}
\def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip}
\def\align#1{\vcenter{\halign{$\displaystyle##\hfil$\tabskip1em&&
$\hfil\displaystyle##$\cr#1}}}
\def\fr#1#2{{#1\over #2}}
\def\var{\mathop{\rm var}\nolimits}
\def\cov{\mathop{\rm cov}\nolimits}
\def\infint{\int_{-\infty}^\infty}
\def\pa#1#2{\partial#1/\partial#2}
\q1
(a)
$$\Pr(|Z_n-a|>\epsilon) = \Pr(Z_n<a-\epsilon) = \Pr(X_i<a-\epsilon)^n,$$
which, since $\Pr(X_i<a-\epsilon)=1-\epsilon/a,$ (for small $\epsilon$)
$\to 0$ as $n\to\infty$ for all $\epsilon>0.$
(b)
$$\Pr(|\sqrt{Z_n}-\sqrt{a}|>\epsilon) =
\Pr(\sqrt{Z_n}<\sqrt{a}-\epsilon) =
\Pr(Z_n<a-\sqrt{a}\epsilon+\epsilon^2) =
\Pr(X_i<a-\sqrt{a}\epsilon+\epsilon^2)^n =
(1-\epsilon(\sqrt{a}-\epsilon)/a)^n \to 0,$$
as $n\to\infty$ because $\epsilon<\sqrt{a},$ otherwise the probability
is zero because the domain would be outside of the uniform distribution.
% not done here
(c)
$$\Pr(U_n\leq x) = \Pr(1-Z_n\leq x/n) = \Pr(Z_n\geq 1-x/n) =
1-\Pr(Z_n < 1-x/n) = 1-\Pr(X_i < x/n)^n = 1-(1-x/n)^n,$$
for $0<x<n,$ which becomes $x>0$ as $n\to\infty,$ and limits to
$1-e^{-x},$ by definition of the exponential.
\q2
Let $Z_n$ be the normalization of sum $S_n$ of $n$ independent Bernoulli
variables, each with parameter $p$ and thus mean $p$ and variance $pq.$
$$\Pr(|Z_n|\leq x) = \Pr(-x\leq Z_n\leq x) =
\Pr(np-\sqrt{npq}x\leq S_n\leq np+\sqrt{npq}x) = \sum{n\choose k}p^k
q^{n-k}.$$
By the central limit theorem, as $n\to\infty,$
$$\Pr(|Z_n|\leq x) = \Pr(Z_n\leq x) - \Pr(Z_n\leq -x) = \int_{-x}^x
{1\over\sqrt{2\pi}}e^{-\fr12 u^2}du = 2\int_0^x
{1\over\sqrt{2\pi}}e^{-\fr12 u^2}du.$$
\q3
$X_n,$ the binomial distribution is equivalent to the sum of $n$
independent Bernoulli distributions $B_i$ with parameter $p.$
$$\E([n^{-1}X_n-p]^2) = \E(n^{-2}[(B_1-p)+(B_2-p)+\cdots+(B_n-p)]^2) =
n^{-2}(n\var(B_i)) = p(1-p)/n,$$
which $\to 0$, as $n\to\infty.$ Converging in mean square implies
converging in probability, therefore the distribution converges in
probability to $p.$
\q5
With $P_n$ the poisson distribution with parameter $n,$
$$\Pr(P_n = k) = {n^k e^{-\lambda}\over k!},$$
$$e^{-n}\left(1+n+{n^2\over 2!}+\cdots+{n^n\over n!}\right) =
\sum_{k=0}^n \Pr(P_n=k) = \Pr(P_n\leq n).$$
$P_n = X_1+X_2+\cdots+X_n$ where $X_i$ has the Poisson distribution with
parameter 1.
The normalized version of $P_n$ is $(P_n-n)/\sqrt{x},$ because the mean
and variance of $X_i$ is $1.$
As $n\to\infty,$ this distribution approaches the standard normal (by
the central limit theorem), and
$\Pr(P_n\leq n) \to \Pr(N(0,1)\leq0) = 1/2.$
\q7
$$\E([X_n+Y_n-(X+Y)]^2) = \E([X_n-X]^2) + \E([Y_n-Y]^2) +
2\E([Y_n-Y][X_n-X]).$$
As $n\to\infty,$ this approaches $2\E([Y_n-Y][X_n-x]) \leq
2\sqrt{\var(Y_n-Y)\var(X_n-X)},$ of which both variances $\to 0$ because
$Y_n \to Y$ in mean square and similar for $X_n,$ and therefore the
first expectation approaches zero and $X_n+Y_n \to X+Y.$
\q8
$$\E([X_n-X]^2)\to0\qquad\hbox{\it\ as } n\to\infty$$
Let $V=1.$ By Cauchy-Schwartz,
$$\E(X_n-X)^2\leq\E([X_n-X]^2)\Rightarrow\E([X_n-X])\to 0,$$
as $n\to\infty.$
By linearity of expectations,
$$\E(X_n)\to\E(X)\qquad\hbox{\it\ as } n\to\infty.$$
If $\Pr(Z_n=0) = 1-{1\over n}$ and $\Pr(Z_n=n) = {1\over n},$ $X_n\to
X=0$ in probability because as $n\to\infty,$ $\Pr(X>\epsilon) \to 0,$
but $\E(X) = \E(0) = 0$ and $\E(X_n) = {n\over n} = 1.$
\q11
$$\Pr(|X|\geq a) = \Pr(g(X)\geq g(a)),$$
by the fact that $g$ is symmetric and strictly increasing on $x>0.$
$$\Pr(g(X)\geq g(a)) \leq {\E(g(X))\over g(a)},$$
by Markov's inequality (since $g(X)$ is a random variable) given that
$g(x)>0,$ therefore the inequality is true.
\q14
$X_n$ converges in mean square to the random variable $X,$ so
$$\E([X_n-X]^2) \to 0\qquad\hbox{\it\ as } n\to\infty,$$
$$\E([X_n-X_m]^2) = \E([X_n-X-(X_m-X)]^2) =
\E([X_n-X]^2)-2\E([X_n-X][X_m-X])+\E([X_m-X]^2) = 2\E([X_n-X][X_m-X]),$$
as $n,m\to\infty,$ from the first assumption.
By the Cauchy-Schwartz inequality,
$$\E([X_n-X][X_m-X])^2\leq \E([X_n-X]^2)\E([X_m-X])^2 \to 0,$$
as $n\to\infty,$ so $\E([X_n-X][X_m-X]) \to 0,$ so the assumption is
proved.
$$\cov(X_n,X_m) = \E([X_n-\E(X_n)][X_m-\E(X_m)]) =
\E([X_n-\mu][X_m-\mu])$$
$X_n$ and $X_m$ are sufficiently similar to $X,$ so
$$\E([X_n-\mu][X_m-\mu]) \to \E([X-\mu]^2) = \sigma^2 =
\sqrt{\var(X_n)\var(X_m)} \Rightarrow \rho\to 1.$$
% An incomplete answer: how is it sufficiently similar?
\bye
|