aboutsummaryrefslogtreecommitdiff
path: root/kang/hw10.tex
blob: 198067a8a2e1abc38b9fff28e3edafe806617310 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
\def\Res{\mathop{\rm Res}}
\let\rule\hrule
\def\hrule{\medskip\rule\medskip}

%page 237
\noindent{\bf 3.}

With
$$f(z) = {4z-5\over z(z-1)},$$

$$\int_C f(z)dz = -2\pi i\Res_{z=\infty}f(z) =
2\pi i\Res_{z=0}{1\over z^2}f\left({1\over z}\right) =
2\pi i\Res_{z=0}{z(4 - 5z) \over z^2(1 - z)}.$$

$${z(4-5z)\over z^2(1-z)} = (4/z-5)(1+z+z^2+\cdots) \to b_1 = 4.$$
Therefore, the value of the integral is $8\pi i.$

\hrule
%page 242
\noindent{\bf 1.}

\noindent{\it (a)}

$$f(z) = z\exp\left({1\over z}\right) = z\left(1 + {1\over z} +
{1\over 2z^2} + \cdots\right),$$
giving principal part
$${1\over 2z} + {1\over 6z^2} + \cdots,$$
meaning that $z=0$ is an essential singular point.

\noindent{\it (b)}

$$f(z) = {z^2\over 1+z} = {z^2\over 1 - (-z)} = z^2 - z + 1 - {1\over z}
+ {1\over z^2} + \cdots,$$
giving principal part
$$-{1\over z} + {1\over z^2} + \cdots,$$
demonstrating an essential singular point at $z=0.$

\noindent{\it (c)}

$$f(z) = {\sin z\over z} = 1 - {z^2\over 3!} + {z^4\over 5!} - {z^6\over
7!}.$$
The principal part is $0,$ so $z=0$ is a removable singular point.

\noindent{\it (d)}

$$f(z) = {\cos z\over z} = {1\over z} - {z\over 2!} + {z^3\over 4!} +
\cdots,$$
giving principal part $1/z,$ meaning $z=0$ is a simple pole.

\noindent{\it (e)}

$$f(z) = {1\over (2-z)^3} = -{1\over (z-2)^3}$$
is a complete Laurent series, and also its principal part, telling us
there is a pole of order 3 at $z=2.$

\noindent{\bf 3.}

\noindent{\it (a)}

If $f(z_0) \neq 0,$ $f(z)$ has Taylor series representation $a_0 +
{a_1(z-z_0)\over 1!} + {a_2(z-z_0)^2\over 2!} + {a_3(z-z_0)^3\over 3!}
+ \cdots.$ Therefore, $g(z)$ has Laurent series representation
${a_0\over z-z_0} + a_1 + {a_2(z-z_0)\over 2!} + {a_3(z-z_0)^3\over 3!},$
evidencing a simple pole.

\noindent{\it (b)}

Similarly, if $f(z_0) = 0,$ $g(z)$ has Taylor series ${a_1\over 1!} +
{a_2(z-z_0)\over 2!} + {a_3(z-z_0)^2\over 3!},$ with principal part $0$
and a removable singular point.

\hrule
%page 246
\noindent{\bf 3.}

\noindent{\it (a)}

$\sinh z/z = f(z)$ is non-zero and analytic at $z=0,$ meaning that
$g(z) = \sinh z/z^4 = f(z)/z^3$ has a pole of order 3 at $z=0.$
The Laurent series of $\sinh z/z^4$ is ${1\over z^3} + {1\over 3!z} +
{z\over 5!} + \cdots,$ giving a residue of $1/6.$

\noindent{\it (b)}

$${1\over z(e^z - 1)} = {1\over z(1+z+{z^2\over 2}+{z^3\over
6}+\cdots-1)} = {1\over z^2(1 + {z\over 2} + {z^2\over 6} + \cdots)} =
{1\over z^2}{1\over 1 - (-{z\over 2} - {z^2\over 6} - \cdots)},$$
and by the standard $1/(1-z)$ expansion since this series is less than 1
(it equals ${e^z - 1\over z}-1,$ which is near 0 about $z=0,$ which can
be verified by L'hospital's rule),
$$ = {1\over z^2} - {1\over 2z} - {1\over 6} + \cdots$$

This is a residue of $-1/2.$

\noindent{\bf 5.}

\noindent{\it (a)}

$|z|=2$ contains the singular point at $z=0,$ and $f(z)$ can be defined
as
$$\phi(z)\over z^3$$ where $\phi(z) = 1/(z+4),$ which is analytic within
the region. The residue is $\phi''(0)/2! = {2/(0+4)^3\over 2} = 1/64.$
This gives the integral a value of $2\pi i/64 = \pi i/32.$

\noindent{\it (b)}

This region contains both singularities at $z=0$ and $z=-4,$ and its
residue is the sum of theirs.
We have already evaluated the residue at $z=0,$ so we will now evaluate
the residue at $z=-4.$
$$f(z) = {{1\over z^3}\over z+4} = {\phi(z)\over z+4}.$$
This has residue $\phi(-4) = -1/64.$
With the residue at $z=0,$ this gives a sum total of $0.$

\noindent{\bf 6.}

$C$ contains singularities at $-i,$ $0,$ and $i.$
At $z=0,$
$$f(z) = {\phi(z)\over z},$$
with
$$\phi(z) = {\cosh \pi z\over z^2+1}.$$
This tells us the residue is $\phi(0) = \cosh 0/1 = 1.$

Similarly, $z=i$ has
$$f(z) = {\phi(z)\over z-i},$$
with
$$\phi(z) = {\cosh \pi z\over z(z+i)} \to \phi(i) =
{\cosh(\pi i)\over -2} = {1\over 2}.$$

And $z=-i$ has
$$f(z) = {\phi(z)\over z+i},$$
with
$$\phi(z) = {\cosh \pi z\over z(z-i)} \to \phi(i) =
{\cosh(-\pi i)\over 2} = {1\over 2}.$$

The sum residue is $2,$ giving the integral a value of $2\cdot 2\pi i =
4\pi i.$

\iffalse
$C$ contains all singularities, so the integral can be determined as
$2\pi i\Res_{z=\infty} f(z).$

$${1\over z^2}f\left({1\over z}\right) =
{z^3\cosh(\pi/z) \over 1+z^2} =
{z^3\over 1+z^2}\left(1 + {(\pi/z)^2\over 2!} + {(\pi/z)^4\over
4!}\right) =

%{1\over 1+z^2}\left(z^3 + {z\pi^2\over 2!} + {\pi^4\over 4!z} +
%{\pi^6\over 6!z^3} + \cdots\right)
$$
\fi

\bye