aboutsummaryrefslogtreecommitdiff
path: root/kang/hw9.tex
blob: 10ba2f79c71445aefc80ca47390f0f8c245211a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
\def\Log{\mathop{\rm Log}\nolimits}
\let\rule\hrule
\def\hrule{\medskip\rule\medskip}

%page 195
\noindent{\bf 1.}

First,
$$\cosh z = \sum_{n=0}^\infty {z^{2n}\over (2n)!}$$

Substituting $z^2$ for $z$ and then multiplying each term by $z$ will
give $z\cosh(z^2).$

$$z{(z^2)^{2n}\over (2n)!} = {zz^{4n} \over (2n)!} = {z^{4n+1}\over
(2n)!}.$$

This gives
$$z\cosh(z^2) = \sum_{n=0}^\infty {z^{4n+1}\over (2n)!}$$
This applies over the entire plane because this function is entire.

\noindent{\bf 3.}

The Maclaurin expansion of
$$f(z) = {z\over z^4+4} = {z\over 4}\cdot {1\over 1+(z^4/4)}$$
may be found by substituting $-z^4/4$ in the place of $z$ in the
standard $1/(1-z)$ Maclaurin expansion, then multiplying by $z/4.$

This gives
$$f(z) = \sum_{n=0}^\infty {z^{4n+1}\over 4^{n-1}}$$

\noindent{\bf 7.}

$$f(z) = \sin z = {e^{iz} - e^{-iz}\over 2}.$$
$$f^{(n)}(z) = i^n{e^{iz} - (-1)^ne^{-iz}\over 2}.$$
Where $n = 2k+1,$ where $k$ is an integer, $f^{(n)}(0)$ simplifies to
$0$ because $e^{i0} - (-1)^{2k+1}e^{-i0} = 1 - 1 = 0.$
Similarly, where $n = 2k,$ $f^{(n)}(0)$ simplifies to $i^{2k} = (-1)^k$
because $e^{i0} - (-1)^{2k}e^{-i0} = 1 + 1 = 2,$ which substituted into
the original equation becomes $i^{2k}{2\over 2}.$

This provides an alternate justification of the Maclaurin expansion
given in Section 64.
Using the standard Maclaurin sum,
$$f(z) = \sum_{n=0}^\infty {f^{(n)}(0)z^n\over n!} = \sum_{k=0}^\infty
{f^{(2k)}(0)z^{2k}\over (2k)!} + \sum_{k=0}^\infty
{f^{(2k+1)}(0)z^{2k+1}\over (2k+1)!} = \sum_{k=0}^\infty
{(-1)^kz^{2k}\over (2k)!}$$

\hrule
%page 205
\noindent{\bf 2.}

$$f(z) = {1\over 1+z} = {1\over z}\cdot {1\over 1+(1/z)}$$

By substitution into the standard $1/(1-z)$ expansion (with $-1/z$ being
substituted for $z$),
$${1\over 1+(1/z)} = \sum_{n=0}^\infty (-1)^n(1/z)^n =
\sum_{n=0}^\infty {(-1)^n\over z^n}.$$
$${1\over z} \cdot {1\over 1+(1/z)} = \sum_{n=0}^\infty {(-1)^n\over
z^{n+1}} = \sum_{n=1}^\infty {(-1)^{n-1}\over z^n}$$

The standard $1/(1-(-1/z))$ applies because
$1<|z|<\infty \to |-1/z| < 1.$

\noindent{\bf 3.}

$${1\over z(1+z^2)} = {1\over z^3(1+(1/z^2))}$$

With $1<|z|<\infty \to |-1/z^2|<1,$
$${1\over (1-(-1/z^2))} = \sum_{n=0}^\infty (-1)^n z^{-2n}.$$
$${1\over z^3(1-(-1/z^2))} = \sum_{n=0}^\infty (-1)^n z^{-2n-3}.$$

\noindent{\bf 5.}

% I know how to do this one. Just formulate 1/(z-1) and repeat for
% 1/(z-2)

$$f(z) = {-1\over (z-1)(z-2)} = {1\over z-1} - {1\over z-2}.$$

Within $|z|<1,$
$${1\over z-1} = -{1\over 1-z} = \sum_{n=0}^\infty (-1)z^n.$$
On $|z|>1,$
$${1\over z-1} = {1\over z}\cdot{1\over 1 - (1/z)} =
\sum_{n=0}^\infty z^{-(n+1)}.$$

Within $|z|<2,$
$${1\over z-2} = -{1\over 2}\cdot{1\over 1 - z/2} =
\sum_{n=0}^\infty {(-1)z^n\over 2^{n+1}}.$$
On $|z|>2,$
$${1\over z-2} = {1\over z}\cdot{1\over 1-(2/z)} = \sum_{n=0}^\infty
2^n/z^(n+1)$$

Within $|z|<1$ and $|z|<2,$ ($D_1$) these become
$$\sum_{n=0}^\infty z^n\left({1\over 2^{n+1}} - 1\right).$$

Within $|z|>1$ and $|z|<2,$ ($D_2$) these become
$$\sum_{n=0}^\infty {z^n\over 2^{n+1}} + \sum_{n=1}^\infty {1\over z^n}.$$

Within $|z|>1$ and $|z|>2,$ ($D_3$) these become
$$\sum_{n=1}^\infty {1 - 2^{n-1}\over z^n}$$

\hrule
%page 218
\noindent{\bf 1.}

The first derivative of $1/(1-z)$ is $1/(1-z)^2,$ which will have the
Maclaurin series equal to the termwise differentiation of the $1/(1-z)$
Maclaurina series. Except $n = 0,$ (for which $z^n = z^0$ has first
derivative 0) the first derivative of $z^n$ is $nz^{n-1}.$
This gives summation
$${1\over (1-z)^2} = \sum_{n=1}^\infty nz^{n-1} = \sum_{n=0}^\infty
(n+1)z^n.$$

Similarly, the second derivative of $1/(1-z)$ is $2/(1-z)^3.$
The second derivative of $z^n$ for $n\geq2$ is $n(n-1)z^{n-2},$ giving
summation
$${2\over (1-z)^3} = \sum_{n=2}^\infty n(n-1)z^{n-2} = \sum_{n=0}^\infty
(n+2)(n+1)z^n.$$

\noindent{\bf 5.}

$${\cos z\over z^2 - (\pi/2)^2} = {\cos z\over (z-\pi/2)(z+\pi/2)} =
{\cos z\over \pi(z-\pi/2)} - {\cos z\over \pi(z+\pi/2)} =
{-\sin(z-\pi/2)\over \pi(z-\pi/2)} - {\sin(z+\pi/2)\over \pi(z+\pi/2)}.$$

As shown in the example in Section 71, $\sin w/w$ is analytic, so this
function is analytic.

\noindent{\bf 6.}

With $|z-1|<1,$
$$\int_1^z {1\over w}dw = \sum_{n=0}^\infty \int_1^z (-1)^n (w-1)^n dw
\to \Log z = \sum_{n=0}^\infty (-1)^n (z-1)^{n+1}/(n+1) =
\sum_{n=1}^\infty {(-1)^{n+1}(z-1)^n\over n}.$$

\hrule
%page 224
\noindent{\bf 1.}

On $0<|z|<1,$
$$e^z = 1 + z + z^2/2 + z^3/6 + \cdots$$

$${1\over z(z^2+1)} = 1/z - z + \cdots$$

Taking their product gives

$${e^z\over z(z^2+1)} = 1/z + 1 + z/2 + z^2/6 - z - z^2 + \cdots =
1/z + 1 - z/2 - 5z^2/6 + \cdots$$

\hrule
%page 237
\noindent{\bf 1.}
% I don't understand residues at all.

\noindent{\it (a)}

$${1\over z+z^2} = {(1+z)^{-1}\over z},$$
giving a residue of $1+z,$ or, at $z=0,$ $1.$

\noindent{\it (b)}

$$z\cos\left({1\over z}\right) = \sum_{n=0}^\infty (-1)^n {z^{1-2n}\over
(2n)!}.$$
The value at $z^{-1}$ or $1-2n = -1 \to n = 1$ is $-1/2.$

\noindent{\it (c)}

$${z-\sin z\over z} = 1 - \sum_{n=0}^\infty (-1)^n {z^{2n}\over (2n+1)!}$$
has residue of $0$ because this is strictly a Taylor series.

\noindent{\it (d)}

Noting that $\cot z = 1/z - z/3 - z^3/45 + \ldots,$
$${\cot z\over z^4} = {1\over z^4}(1/z - z/3 - z^3/45 + \ldots) =
{1\over z^5} - {1\over 3z^3} - {1\over 45z} + \ldots,$$
giving a residue of $-1/45.$

\noindent{\it (e)}

$${\sinh z\over z^4(1-z^2)} =
z^{-4}(z+{z^3\over 3!}+\cdots)(1+z^2+z^4+\cdots) =
z^{-3} + z^{-1}/6 + z^{-1} + z/6 + z + z^3/6,$$
giving a residue of $7/6.$

\bye