diff options
author | Holden Rohrer <hr@hrhr.dev> | 2021-08-25 15:34:08 -0400 |
---|---|---|
committer | Holden Rohrer <hr@hrhr.dev> | 2021-08-25 15:34:08 -0400 |
commit | ebe8ba7ffdeda20a05ac2668c51058e828b7a494 (patch) | |
tree | 450d3b7be31517c82ed8716311870b87fa81afe8 | |
parent | b90f3a1fc6c09bc97de18c3226e87e18fdc7badf (diff) |
finished prerequisites test for zhilova
-rw-r--r-- | zhilova/prereq.tex | 108 |
1 files changed, 108 insertions, 0 deletions
diff --git a/zhilova/prereq.tex b/zhilova/prereq.tex new file mode 100644 index 0000000..56edac1 --- /dev/null +++ b/zhilova/prereq.tex @@ -0,0 +1,108 @@ +{\bf Problem 1.} + +$$(cX - ac)(cY - bc)(cZ - bc) = c^3(X-a)(Y-b)(Z-b) = c^3(XYZ - XYb - XZb ++ Xb^2 - aYZ + aYb + abZ - ab^2)$$ +This is $c^3XYZ - c^3XYb - c^3XZb + c^3Xb^2 - c^3aYZ + c^3aYb + c^3abZ +- c^3ab^2,$ based on repeated application of the distributive property. + +{\bf Problem 2.} + +{\bf (a)} +$$\sum_{i=1}^n Ca_i + Cb_i.$$ + +{\bf (b)} + +$$\sum_{i=1}^n\sum_{j=1}^n Ca_ia_j$$ + +{\bf (c)} + +$$\sum_{i=1}^n (c_1a_i + c_2b_i)$$ + +{\bf Problem 3.} + +$$\log_3(81) + 2\log_4(1024^{-1}) = 4 - 2\cdot 5 = -6$$ + +{\bf Problem 4.} + +$$\int_{-1}^1 xdx = \left[ x^2/2 \right]_{-1}^1 = 0.$$ + +$$\int_{-1}^1 x^2dx = \left[ x^3/3 \right]_{-1}^1 = 1/3 - (-1/3) = 2/3$$ + +$$\int_0^1 (x-a)^2 dx = \left[ (x-a)^3/3 \right]_0^1=((1-a)^3 + a^3)/3$$ + +{\bf Problem 5.} + +$$\int_0^\infty e^{-2x} dx = \lim_{x\to\infty}(e^{-2x} - e^0) = -1.$$ + +$$\int_{-\infty}^\infty e^{-2x} dx = \lim_{x\to\infty}(e^{-2x} - e^2x) = +-\infty.$$ + +{\bf Problem 6.} + +$A,$ $B,$ and $C,$ as bounded intervals, are sets. By definition, if +$x\in A \lor B,$ $x\in A\cap B,$ so if $A\supset C$ and $B\supset +C,$ $\forall x\in C\to x\in A\cap B.$ + +{\bf Problem 7.} + +{\bf (a) } +$$\int_{-\infty}^\infty f(x, y) dx = \int_0^y 24x^3y dx = 6y^5,$$ +on $y\in[0,1],$ $0$ elsewhere. + +$$\int_{-\infty}^\infty f(x, y) dx = \int_x^1 24x^3y dy = \left[ +12x^3y^2 \right]_x^1 = 12x^3(1-x^2),$$ on $x\in[0,1],$ $0$ elsewhere. + +{\bf (b) } + +Integrating over the plane is equivalent to a double integral across +both variables from $-\infty$ to $\infty,$ so we can find it by + +$$\int_0^1 6y^5 dy = 1.$$ + +{\bf Problem 8.} + +No. +Let $f(x,y)$ be $2$ on $0<x,y<1,$ $0$ otherwise. + +$$f_1(x) = \int_{\bf R} f(x,y) dy = \int_0^1 2 dy = 2.$$ +$$f_2(y) = \int_{\bf R} f(x,y) dx = \int_0^1 2 dx = 2.$$ +$$\int_{\bf R} f_1(x)dx \int_{\bf R} f_2(y)dy = \int_0^1 2dx\int_0^1 2dy += 4.$$ + +$$\int\int_{\bf R^2} f(x,y) = \int_0^1 \int_0^1 2 dxdy = 2 \neq 4.$$ + +{\bf Problem 9.} + +$$\int_0^\infty \exp(-x)\exp(tx) dx = \int_0^\infty \exp((t-1)x) dx$$ +converges on $t-1 < 0 \to t < 1.$ + +{\bf Problem 10.} + +$$(1-(-1/2))\sum_{k=0}^{+\infty} (-1/2)^k = \sum_{k=0}^{+\infty} +(-1/2)^k - \sum_{k=1}^{+\infty} (-1/2)^k = 1.$$ + +Therefore, the original sum is 2/3. + +{\bf Problem 11.} + +$$f(x) = e^{-x^2/2}$$ + +$$f(0) = 1, f'(x) = -xe^{-x^2/2} \to f'(0) = 0, f''(x) = -e^{-x^2/2} + +x^2e^{-x^2/2} \to f''(0) = -1.$$ + +$$f(x) \approx 1 - x^2.$$ + +{\bf Problem 12.} + +{\bf (a)} + +$X = (X_1, X_2, X_3)^T, X^T = (X_1, X_2, X_3).$ +$$XX^T = X_1^2 + X_2^2 + X_3^2 = X^TX.$$ + +{\bf (b)} + +$$b^TAa = \pmatrix{2&-4}\pmatrix{2&0\cr1&-1\cr}\pmatrix{1\cr0} = +\pmatrix{0}.$$ +$$a^Ta^T = \pmatrix{1&0}\pmatrix{2&1\cr 1&-1\cr} = \pmatrix{2&1}$$ + +\bye |