diff options
author | Holden Rohrer <hr@hrhr.dev> | 2021-09-21 17:12:46 -0400 |
---|---|---|
committer | Holden Rohrer <hr@hrhr.dev> | 2021-09-21 17:12:46 -0400 |
commit | 32f4af5f369fa9f0b2988ecad7797f4bec3661c3 (patch) | |
tree | 7ce1c56011914681d6e2ffb5737dcdf1078d3930 /zhilova/05_random_variables | |
parent | b8433c9909bc5d29df16fd3011251a0a214d2b1a (diff) |
notes and homework
Diffstat (limited to 'zhilova/05_random_variables')
-rw-r--r-- | zhilova/05_random_variables | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/zhilova/05_random_variables b/zhilova/05_random_variables new file mode 100644 index 0000000..fbf8bc0 --- /dev/null +++ b/zhilova/05_random_variables @@ -0,0 +1,48 @@ + Cumulative Distribution Function (CDF) +Def: CDF of a r.v. X, taking values in R is +F_X(x) = \Pr(X\leq x) = \Pr(X\in (-\infty, x] ) % to appease vim, ')' + +Th 1.5.1 (Properties of a CDF) +0) 0 \leq F_X(x) \leq 1 \forall x \in R +1) It is non-decreasing. x_1 \leq x_2 \in A, F_X(x_1) \leq F_X(x_2). +2) F_X(x) -> 0 as x -> -\infty +3) F_X(x) -> 1 as x -> +\infty +4) F_X(x) is right-continuous. + + Continuous R.V. +Over an uncountable domain D like (0, 1), R. + +Let there be a CDF F_X(x) = P(X \leq x). + +Assume there exists f_X(x) := d/dx F_X(x), the probability density +function. +[discontinuities might be able to be resolved with a delta function] +By the second fundamental theorem of calculus (?), +F_X(x) = P(X \leq x) = \int_{-\infty}^\infty f_x(t) dt. + +In the discrete case, we have the pmf (probability mass function) +where P_x(t) = P(X = t) + +P(a < X \leq b) for a < b = P_X(b) - P_X(a). + +Examples: +- Uniform Distribution +X ~ U[a, b] + = { 1/(b-a) for a \leq x \leq b + { 0 otherwise. + +- Exponential Distribution +X ~ Exp(\lambda) \lambda > 0 +f_X(x) = { \lambda e^{-\lambda x}, x \geq 0 + { 0 otherwise + +F_X(x) = { 1 - e^{-\lambda x}, x \geq 0 + { 0 otherwise + +- Normal Distribution +X ~ N(\mu, \sigma^2) \mu \in R, \sigma^2 > 0. +\sigma = stdev. \sigma^2 = variance. \mu = mean/center. + +f_X(x) = 1/\sqrt{2\pi \sigma^2} exp( - (x-\mu)^2 / {2\sigma^2} ) + +F_X(x) = \int_{-\infty}^x f_X(x) dx |