aboutsummaryrefslogtreecommitdiff
path: root/zhilova/06_ev
diff options
context:
space:
mode:
authorHolden Rohrer <hr@hrhr.dev>2021-09-21 17:12:46 -0400
committerHolden Rohrer <hr@hrhr.dev>2021-09-21 17:12:46 -0400
commit32f4af5f369fa9f0b2988ecad7797f4bec3661c3 (patch)
tree7ce1c56011914681d6e2ffb5737dcdf1078d3930 /zhilova/06_ev
parentb8433c9909bc5d29df16fd3011251a0a214d2b1a (diff)
notes and homework
Diffstat (limited to 'zhilova/06_ev')
-rw-r--r--zhilova/06_ev67
1 files changed, 67 insertions, 0 deletions
diff --git a/zhilova/06_ev b/zhilova/06_ev
new file mode 100644
index 0000000..c13c159
--- /dev/null
+++ b/zhilova/06_ev
@@ -0,0 +1,67 @@
+ Expectation/Expected Value/Mean Value/Average of an r.v.:
+ (Does not exist for all r.v.)
+We must assume that \int_{-\infty}^\infty |x|f_x(x) dx < \infty, so
+
+E(X) := \int_{-\infty}^\infty xf_x(x) dx
+= {\bb E} X = E X.
+
+If discrete,
+E(X) = \sum_{x\in D} xp_x(x)
+
+ Higher (order) moments of X
+moment of kth order := {\bb E}(X^k)
+Again, they do not always exist, but they do exist if {\bb E}(|X^k|)
+exists.
+
+ Variance/dispersion of X
+Var(X) = {\bb E}(X - {\bb E} X)^2
+aka quadratic deviation
+\def\exp{{\bb E}}
+
+Thm: [ proof in textbook ] (1)
+g : R \mapsto R.
+
+Let \int |g(x)| f_x(x) < \infty
+Therefore, \exp g(X) = \int_{-\infty}^\infty g(x)f_x(x) dx
+
+Ex:
+ \exp X^2 = \int x^2 f_x(x) dx
+ \exp(X-a) = \int (x-a) f_x(x) dx
+ \exp\sin X = \int sin x f_x(x) dx
+
+ Stdev
+Stdev := \sqrt{Var(x)}
+
+ Properties of E(x)
+1) Linearity
+ Where E(X), E(Y) exist, and a, b \in R
+ E(aX + bY) = aE(X) + bE(Y)
+ By thm (1), \int axf_x(x) dx = a \int xf_x(x) dx.
+2) E(a) = a
+3) If g(x) \geq 0, E(g(X)) \geq 0, regardless of X.
+
+Example application:
+Var(X)
+= E [X - E[X]]^2
+= E [ X^2 - 2X * E[X] + [E[X]]^2 ]
+= E[X^2] - 2E[X]^2 + [E[X]]^2
+ ^ linearity applied with E[X] as constant
+= E[X^2] - E[X]^2
+
+On the reals (by property 3),
+Var(X) \geq 0
+\to E(X^2) - E(X)^2 \geq 0
+\to E(X^2) \geq E(X)^2 [equality is strict unless X = a]
+
+More example:
+Var(aX) = E[aX]^2 - (E[aX])^2
+ = E[a^2X^2] - (aE[X])^2
+ = a^2E[X^2] - a^2E[X]^2
+ = a^2(Var(X))
+
+Definitions:
+1) centering: X - \exp X. \exp[X - \exp X] = 0.
+2) rescaling: With c>0, cX. Var(cX) = c^2 Var X.
+3) centering and standardization: centering and rescaling s.t.
+Var(Y) = 1.
+ Y = (X - \exp X)/\sqrt{Var X}