diff options
Diffstat (limited to 'howard/hw7.tex')
-rw-r--r-- | howard/hw7.tex | 192 |
1 files changed, 192 insertions, 0 deletions
diff --git a/howard/hw7.tex b/howard/hw7.tex new file mode 100644 index 0000000..39d2f64 --- /dev/null +++ b/howard/hw7.tex @@ -0,0 +1,192 @@ +\newfam\bbold +\def\bb#1{{\fam\bbold #1}} +\font\bbten=msbm10 +\font\bbsev=msbm7 +\font\bbfiv=msbm5 +\textfont\bbold=\bbten +\scriptfont\bbold=\bbsev +\scriptscriptfont\bbold=\bbfiv + +\newcount\indentlevel +\newcount\itno +\def\reset{\itno=1}\reset +\def\afterstartlist{\advance\leftskip by .5in\par\advance\leftskip by -.5in} +\def\startlist{\par\advance\indentlevel by 1\advance\leftskip by .5in\reset +\aftergroup\afterstartlist} +\def\alph#1{\ifcase #1\or a\or b\or c\or d\or e\or f\or g\or h\or + i\or j\or k\or l\or m\or n\or o\or p\or q\or r\or + s\or t\or u\or v\or w\or x\or y\or z\fi} +\def\li#1\par{\medskip\penalty-100\item{\ifcase\indentlevel \number\itno.\or + \alph\itno)\else + (\number\itno)\fi + }% + #1\smallskip\advance\itno by 1\relax} +\def\ul{\bgroup\def\li##1\par{\item{$\bullet$} ##1\par}} +\let\endul\egroup +\def\hline{\noalign{\hrule}} +\let\impl\rightarrow +\newskip\tableskip +\tableskip=10pt plus 10pt +\def\endproof{\leavevmode\quad\vrule height 6pt width 6pt +depth 0pt\hskip\parfillskip\hbox{}{\parfillskip0pt\medskip}} +\def\lcm{\mathop{\rm lcm}} + +\li Find the prime factorization of each of these integers. + +{\startlist + +\li 9072 + +$9072 = 2^4\cdot 3^4\cdot 7.$ + +\li 324 + +$324 = 2^2\cdot 3^4.$ + +\li 6! + +$6! = 2^4\cdot 3^2\cdot 5.$ + +} + +\li Approximate the number of prime numbers not exceeding 50000. Show +your work. + +The approximate number of primes less than $N$ is $N/\ln(N)$ +$${50000\over\ln(50000)} \approx {50000\over 10.82} \approx 4621.$$ + +\li Determine whether the integers 2, 51, 101, and 119 are pairwise +relatively prime. Show your work for full credit. + +These are the prime factorizations of the above numbers: + +$2 = 2.$ + +$51 = 3\cdot 17.$ + +$101 = 101.$ + +$119 = 7\cdot 17.$ + +$51$ and $119$ are not coprime because they share the factor 17. +Every other pair is relatively prime. + +\li What is the greatest common divisors of these pairs of integers? + +{\startlist + +\li $2^4*3^3*5^6$ and $2^5*3^3*5^2*7^2.$ + +$2^4*3^3*5^2.$ + +\li 19 and $19^1 8.$ + +19. +} + +\li What is the least common multiple of these pairs of integers? + +{\startlist + +\li $2^4*3^3*5^6$ and $2^5*3^3*5^2*7^2.$ + +$2^5*3^3*5^6*7^2.$ + +\li $2^4*7$ and $5^5*13.$ + +$2^4*5^5*7*13.$ + +} + +\li Find the least integer with $n$ distinct positive factors where $n$ +is below. For example, if $n=4,$ then the solution is $6$ because +$1,2,3,6$ are distinct positive factors of $6$ and there are $n=4$ of +them. + +{\startlist + +\li 3 + +$4$ has factors $1,2,4.$ + +\li 5 + +$16$ has factors $1,2,4,8,16.$ + +\li 6 + +$12$ has factors $1,2,3,4,6,12.$ + +} + +\li Use the Euclidean algorithm to find the following values. You must +clearly show all steps of your work using the Euclidean algorithm taught +in class. + +{\startlist + +\li $\gcd(100,101)$ + +$(100,101)\to (100, 1)\to (1, 0),$ giving $\gcd(100,101) = 1.$ + +\li $\gcd(64, 12)$ + +$(64, 12)\to (12, 4)\to (4, 0),$ giving $\gcd(64,12) = 4.$ + +} + +\li Show your work by using the Chinese Remainder Theorem, find all +values $x$ such that + +$x \equiv 1 \pmod{5}.$ + +$x \equiv 2 \pmod{6}.$ + +$x \equiv 3 \pmod{7}.$ + +\smallskip +5, 6, and 7 are pairwise coprime, so these congruences specify a unique +integer $n$ such that $x\equiv n \pmod{210}.$ + +$y_1 = 42,$ and $a_1 = 1,$ so $z_1 = 3.$ + +$y_2 = 35,$ and $a_2 = 2,$ so $z_2 = 5.$ + +$y_3 = 30,$ and $a_3 = 3,$ so $z_3 = 4.$ + +$a_1y_1z_1 + a_2y_2z_2 + a_3y_3z_3 \equiv 206 \bmod{210}.$ + +\li Decrypt the following ciphertext message: $HJUXDW,$ which was +encrypted first using a shift cipher, then using a transposition cipher. +The key of the shift cipher was $k=3,$ and the transposition cipher was +based on the permutation $\sigma$ of the set 1, 2, 3 with $\sigma(1) = +2$ and $\sigma(2) = 3$ and $\sigma(3) = 1.$ + +We start by computing a transposition $\sigma^{-1}(3) = 2$ and +$\sigma^{-1}(2) = 1$ and $\sigma^{-1}(1) = 3.$ +The ciphertext becomes $JUHDWX.$ +We then convert the ciphertext to numbers +$(9, 20, 7, 3, 22, 23)$ and subtract three to get +$(6, 17, 4, 0, 19, 20),$ and finally convert numbers to letters, +obtaining $GREATU.$ + +\li Suppose you intercept the message ``57 04 00 59 50 57 04 14 52 50 57 +42 00 54'' that has been encrypted using the RSA algorithm. You know +that the public key used for encryption is $(65,7).$ Decrypt the message +to determine what was said. Use the process shown in lecture to complete +this problem. You must show all work. (If your calculator is unable to +calculate $a^d\bmod{n}$ where a is one of the numbers in the message above and +$d$ is the decryption key, then you can just show $a^d\bmod{n}$ for each value of +a. Note that this is the final step in decryption so you won't show what +the message actually was. You must still show the work for calculating +the decryption key $d$). + +$n = 13\cdot 5 = p\cdot q.$ +$\lcm(p-1,q-1) = 12.$ +$7\cdot 7 \equiv 1 \pmod{12},$ +so $d = 7$ (the multiplicative inverse of 7 mod 12) + +We then compute $a^d\bmod{n}$ for each number in the message, obtaining +$(8,4,0,19,15,8,4,14,13,15,8,3,0,24)$ or $IEATPIEONPIDAY.$ + +\bye |