diff options
Diffstat (limited to 'li')
-rw-r--r-- | li/hw4.tex | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/li/hw4.tex b/li/hw4.tex new file mode 100644 index 0000000..558f9cb --- /dev/null +++ b/li/hw4.tex @@ -0,0 +1,140 @@ +\def\bmatrix#1{\left[\matrix{#1}\right]} + + {\noindent\bf Section 2.4} + +{\noindent\bf 6.} + +{\it (a)} + +It has a two-sided inverse if $r = m = n.$ + +{\it (b)} + +It has infinitely many solutions if $r = m < n.$ + +{\noindent\bf 12.} + +{\it (a)} + +Matrix $A$ is of rank 1 and equal to +$$\bmatrix{1\cr 0\cr 2}\bmatrix{1&0&0&3}$$ + +{\it (b)} + +Matrix $A$ is of rank 1 and equal to +$$\bmatrix{2\cr 6}\bmatrix{1&-1}$$ + +{\noindent\bf 18.} + +The row space has basis: +$$\{\bmatrix{0\cr1\cr2\cr3\cr4}, \bmatrix{0\cr0\cr0\cr1\cr2}\},$$ +the null space has basis: +$$\{\bmatrix{1\cr0\cr0\cr0\cr0}, \bmatrix{0\cr-2\cr1\cr0\cr0}, +\bmatrix{0\cr0\cr0\cr-2\cr0}\},$$ +the column space has basis: +$$\{\bmatrix{1\cr1\cr0},\bmatrix{3\cr4\cr1}\},$$ +and the left null space has basis: +$$\{\bmatrix{1\cr-1\cr1}\}.$$ + +{\noindent\bf 32.} + +$A$ has column space of the xy-plane, and left null space of the z-axis. +It also has row space of the yz-plane, and null space of the x-axis. + +$I+A$ has full rank, so its column space and row space are ${\bf R}^3,$ +and its null space and left null space are the zero vector. + +\iffalse % practice problems + +{\noindent\bf 2.} + +{\noindent\bf 3.} + +{\noindent\bf 8.} + +{\noindent\bf 9.} + +{\noindent\bf 10.} + +{\noindent\bf 16.} + +{\noindent\bf 17.} + +{\noindent\bf 21.} + +{\noindent\bf 25.} + +{\noindent\bf 27.} + +{\noindent\bf 35.} + +{\noindent\bf 37.} + +\fi + + {\noindent\bf Section 2.6} + +{\noindent\bf 16.} + +$$\bmatrix{0&1&0&0\cr 0&0&1&0\cr 0&0&0&1\cr 1&0&0&0}$$ +If $A$ maps $(x_1, x_2, x_3, x_4)$ to $(x_2, x_3, x_4, x_1),$ $A^2$ maps +$x$ to $(x_3, x_4, x_1, x_2),$ and $A^3$ takes $x$ to $(x_4, x_1, x_2, +x_3),$ and $AA^3 = I = A^4,$ so $A^3 = A^{-1}$ by definition of the +identity. + +{\noindent\bf 28.} + +{\it (a)} + +Range is $V^2,$ and kernel is $0.$ + +{\it (b)} + +Range is $V^2,$ and kernel has basis $(0, 0, 1).$ + +{\it (c)} + +Range is $0,$ and kernel is $V^2$ + +{\it (d)} + +Range is the subspace with basis $(1, 1)$ and kernel has basis $(0, 1).$ + +{\noindent\bf 36.} + +{\it (a)} + +$$\bmatrix{2&5\cr 1&3}$$ + +{\it (b)} + +$$\bmatrix{3&-5\cr -1&2}$$ + +{\it (c)} + +Because, by linearity, if $(2, 6) \mapsto (1, 0),$ $.5(2,6) = (1, 3) +\mapsto (.5, 0).$ + +{\noindent\bf 44.} + +This is equivalent to a 180$^\circ$ rotation. + +\iffalse % practice problems + +{\noindent\bf 6.} + +{\noindent\bf 7.} + +{\noindent\bf 8.} + +{\noindent\bf 9.} + +{\noindent\bf 17.} + +{\noindent\bf 40.} + +{\noindent\bf 45.} + +\fi + +\bye |