diff options
Diffstat (limited to 'zhilova/06_ev')
-rw-r--r-- | zhilova/06_ev | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/zhilova/06_ev b/zhilova/06_ev new file mode 100644 index 0000000..c13c159 --- /dev/null +++ b/zhilova/06_ev @@ -0,0 +1,67 @@ + Expectation/Expected Value/Mean Value/Average of an r.v.: + (Does not exist for all r.v.) +We must assume that \int_{-\infty}^\infty |x|f_x(x) dx < \infty, so + +E(X) := \int_{-\infty}^\infty xf_x(x) dx += {\bb E} X = E X. + +If discrete, +E(X) = \sum_{x\in D} xp_x(x) + + Higher (order) moments of X +moment of kth order := {\bb E}(X^k) +Again, they do not always exist, but they do exist if {\bb E}(|X^k|) +exists. + + Variance/dispersion of X +Var(X) = {\bb E}(X - {\bb E} X)^2 +aka quadratic deviation +\def\exp{{\bb E}} + +Thm: [ proof in textbook ] (1) +g : R \mapsto R. + +Let \int |g(x)| f_x(x) < \infty +Therefore, \exp g(X) = \int_{-\infty}^\infty g(x)f_x(x) dx + +Ex: + \exp X^2 = \int x^2 f_x(x) dx + \exp(X-a) = \int (x-a) f_x(x) dx + \exp\sin X = \int sin x f_x(x) dx + + Stdev +Stdev := \sqrt{Var(x)} + + Properties of E(x) +1) Linearity + Where E(X), E(Y) exist, and a, b \in R + E(aX + bY) = aE(X) + bE(Y) + By thm (1), \int axf_x(x) dx = a \int xf_x(x) dx. +2) E(a) = a +3) If g(x) \geq 0, E(g(X)) \geq 0, regardless of X. + +Example application: +Var(X) += E [X - E[X]]^2 += E [ X^2 - 2X * E[X] + [E[X]]^2 ] += E[X^2] - 2E[X]^2 + [E[X]]^2 + ^ linearity applied with E[X] as constant += E[X^2] - E[X]^2 + +On the reals (by property 3), +Var(X) \geq 0 +\to E(X^2) - E(X)^2 \geq 0 +\to E(X^2) \geq E(X)^2 [equality is strict unless X = a] + +More example: +Var(aX) = E[aX]^2 - (E[aX])^2 + = E[a^2X^2] - (aE[X])^2 + = a^2E[X^2] - a^2E[X]^2 + = a^2(Var(X)) + +Definitions: +1) centering: X - \exp X. \exp[X - \exp X] = 0. +2) rescaling: With c>0, cX. Var(cX) = c^2 Var X. +3) centering and standardization: centering and rescaling s.t. +Var(Y) = 1. + Y = (X - \exp X)/\sqrt{Var X} |