aboutsummaryrefslogtreecommitdiff
path: root/zhilova/midterm2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'zhilova/midterm2.tex')
-rw-r--r--zhilova/midterm2.tex146
1 files changed, 146 insertions, 0 deletions
diff --git a/zhilova/midterm2.tex b/zhilova/midterm2.tex
new file mode 100644
index 0000000..8e74cf8
--- /dev/null
+++ b/zhilova/midterm2.tex
@@ -0,0 +1,146 @@
+\def\problem#1{\goodbreak\bigskip\noindent{\bf #1)}\smallskip\penalty500}
+\newfam\rsfs
+\newfam\bbold
+\def\scr#1{{\fam\rsfs #1}}
+\def\bb#1{{\fam\bbold #1}}
+\let\oldcal\cal
+\def\cal#1{{\oldcal #1}}
+\font\rsfsten=rsfs10
+\font\rsfssev=rsfs7
+\font\rsfsfiv=rsfs5
+\textfont\rsfs=\rsfsten
+\scriptfont\rsfs=\rsfssev
+\scriptscriptfont\rsfs=\rsfsfiv
+\font\bbten=msbm10
+\font\bbsev=msbm7
+\font\bbfiv=msbm5
+\textfont\bbold=\bbten
+\scriptfont\bbold=\bbsev
+\scriptscriptfont\bbold=\bbfiv
+
+\def\E{\bb E}
+\def\P{\bb P}
+\newcount\qnum
+\def\fr#1#2{{#1\over #2}}
+\def\var{\mathop{\rm var}\nolimits}
+\def\cov{\mathop{\rm cov}\nolimits}
+\def\dd#1#2{\fr{\partial #1}{\partial #2}}
+
+\problem{1}
+\noindent{\bf (a)}
+$$\E(Z) = \pmatrix{1\cr0}\qquad \var(Z) = \pmatrix{2&c\cr c&4}$$
+
+\noindent{\bf (b)}
+Covariance is a bilinear function, and $\var (kX) = \cov(kX,kX) =
+k^2\var X.$ Also, $\cov(c, X) = 0,$ if $c$ is a constant, regardless of
+$X.$ (because $\cov(c, X) = \E(cX) - \E(c)\E(X) = c\E(X) - c\E(X) = 0.$)
+With linearity, this means $\cov(X+c, Y+b) = \cov(X, Y).$
+$$\rho(2X-1, 5-Y) =
+{\cov(2X-1, 5-Y)\over\sqrt{\var(2X-1)}\sqrt{\var(5-Y)}} =
+{\cov(2X, -Y)\over\sqrt{\var(2X)}\sqrt{\var(-Y)}} = $$$$
+{-2\cov(X, Y)\over2\sqrt{\var(X)}\sqrt{\var(Y)}} =
+-{.5\over\sqrt{2}\sqrt{4}} =
+-{\sqrt2\over8}.$$
+
+\noindent{\bf (c)}
+
+$X$ and $Y$ are not necessarily independent from each other, although
+independence would give a covariance of 0 ($p_XY(x,y) = p_X(x)p_Y(y)
+\to \E(XY) = \E(X)\E(Y).$)
+
+Let $W \sim \cal N(0, 1),$ and $Z \sim 2\cal B(.5) - 1$ (i.e. it has a
+.5 probability of being -1 or 1).
+$X := \sqrt2 W + 1$ and $Y := 2ZW.$
+These are strictly dependent because $Y = \sqrt2Z(X-1),$ so $Y$ has
+conditional distribution $\sqrt2(x-1)(2\cal B(.5) - 1),$ which is
+clearly not equal to its normal distribution (which can be fairly easily
+verified by symmetry of $W$).
+However, they have covariance 0:
+$$\E(XY) - \E X\E Y = \E((\sqrt2 W + 1)2ZW) - \E(\sqrt 2 W + 1)\E(2ZW)
+$$$$
+= \E(2\sqrt2 ZW^2) - \E(\sqrt 2 W)\E(2ZW)
+= 0 - 0\E(2ZW) = 0.
+$$
+
+% wikipedia says no
+
+\problem{2}
+\noindent{\bf (a)}
+
+\def\idd#1#2{\dd{#1}{#2}^{-1}}
+$Y_1 = 2X_2$ and $Y_2 = X_1 - X_2$ give us $X_2 = Y_1/2$ and
+$X_1 = Y_2 + Y_1/2.$ This lets us compute Jacobian
+$$J = \left|\matrix{\idd{x_1}{y_1} &\idd{x_1}{y_2}\cr
+ \idd{x_2}{y_1} &\idd{x_2}{y_2}}\right|
+ = \left|\matrix{2&1\cr2&0}\right| = -2.$$
+$$g(y_1, y_2) = \left\{\vcenter{\halign{\strut$#$,&\quad$#$\cr
+ |J|2e^{-(y_2+y_1/2)}e^{-y_1/2} & 0 < y_2+y_1/2 < y_1/2\cr
+ 0 & {\rm elsewhere}\cr
+ }}\right.$$
+$y_2+y_1/2 < y_1/2 \to y_2 < 0 \to -y_2 > 0.$
+And $0 < y_2 + y_1/2 \to y_1 > -2y_2 > 0.$
+$$ = \left\{\vcenter{\halign{\strut$#$,&\quad$#$\cr
+ 4e^{-y_2}e^{-y_1}&y_1 > -2y_2 > 0\cr
+ 0&{\rm elsewhere}\cr
+ }}\right.$$
+
+\noindent{\bf (b)}
+
+$$g(y_1) = \int_{-\infty}^\infty g(y_1,y_2)dy_2 =
+\bb I(y_1>0)\int_{-y_1/2}^0 4e^{-y_1}e^{-y_2} dy_2 =
+\bb I(y_1>0)4e^{-y_1}(1-e^{y_1/2}).$$
+$$g(y_2) = \int_{-\infty}^\infty g(y_1,y_2)dy_1 =
+\bb I(y_2<0)\int_{-2y_2}^\infty 4e^{-y_1}e^{-y_2} dy_1 =
+\bb I(y_2<0)4e^{-y_2}(-e^{2y_2})
+.$$
+
+\noindent{\bf (c)}
+
+They are independent iff $g(y_1,y_2) \bb I(y_1 > -2y_2 > 0)e^{-y_1-y_2}
+= g(y_1)g(y_2) = \bb I(y_1 > 0)\bb I(y_2 < 0) h(x),$
+where $h(x)$ is the strictly non-zero product of exponents that would
+result, showing that they are dependent (if $y_1 = -y_2 = 1,$ the right
+indicators are satisfied but not the left indicator, and since $h(x)$ is
+non-zero, we see a contradiction.)
+
+\problem{3}
+\noindent{\bf (a)}
+We start determining the mgf from the pdf of $X,$
+$p_X(x) =
+\fr1{\sqrt{2\pi}}e^{-\fr12x^2}.$
+$$\E(e^{tX}) =
+\int_{-\infty}^\infty e^{tx}\fr1{\sqrt{2\pi}}e^{-\fr12x^2} dx =
+\fr1{\sqrt{2\pi}} \int_{-\infty}^\infty e^{tx-\fr12x^2} dx = $$$$
+\fr1{\sqrt{2\pi}} \int_{-\infty}^\infty e^{tx-\fr12x^2-\fr12t^2 + \fr12t^2} dx =
+e^{\fr12t^2} \int_{-\infty}^\infty \fr1{\sqrt{2\pi}}e^{-\fr12(x-t)^2} dx
+= e^{\fr12t^2},
+$$
+by the final integrand being a normal pdf and therefore integrating to
+1.
+
+\noindent{\bf (b)}
+$$M_Y(t) = \E(e^{t(aX+b)}) = \E(e^{bt}e^{atX}) = e^{bt}\E(e^{atX}) =
+e^{bt}M_X(at) = e^{bt}e^{\fr12(at)^2}.$$
+
+\noindent{\bf (c)}
+
+Theorem 1.9.2 states that two probability distribution functions are
+alike if and only if their moment generating functions are equal in some
+vicinity of zero.
+The mgf of $Y$ corresponds to $\cal N(b, a^2),$ which has the following
+mgf (by computation from its pdf definition):
+$$\int_{-\infty}^\infty e^{tx}\fr1{a\sqrt{2\pi}}e^{-(x-b)^2\over
+2a^2} dx =
+\fr1{a\sqrt{2\pi}}\int_{-\infty}^\infty e^{2a^2tx - x^2 + 2bx - b^2\over
+2a^2} dx =$$$$
+\fr1{a\sqrt{2\pi}}\int_{-\infty}^\infty e^{-(b+a^2t)^2 +
+2(a^2t+b)x - x^2 - b^2 + (b+a^2t)^2\over 2a^2} dx =
+e^{(b+a^2t)^2-b^2\over 2a^2}\int_{-\infty}^\infty
+\fr1{a\sqrt{2\pi}}e^{-(b+a^2t+x)^2 \over 2a^2} dx =
+e^{bt}e^{(at)^2\over2},
+$$
+proving $Y \sim \cal N(b, a^2),$ because this function is convergent
+everywhere, and reusing the fact that the final integrand is a normal
+pdf, so it must integrate to 1.
+
+\bye