aboutsummaryrefslogtreecommitdiff
path: root/gupta/hw11.tex
blob: c2b2b7f8f77906d82d645c57c1872639d18d0639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
\newfam\bbold
\def\bb#1{{\fam\bbold #1}}
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\font\bigbf=cmbx12 at 24pt

\def\answer{\smallskip{\bf Answer.}\par}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}
\let\endanswer\endproof
\def\section#1{\vskip18pt plus 6pt minus 6pt\vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in%
\noindent{\bf #1}}
\let\impl\to
\def\nmid{\hskip-3pt\not\hskip2.5pt\mid}
\def\problem#1{\bigskip\par\penalty-100\item{#1}}

\headline{\vtop{\hbox to \hsize{\strut Math 2106 - Dr. Gupta\hfil Due Thursday
2022-04-14 at 11:59 pm}\hrule height .5pt}}

\centerline{\bigbf Homework 11 - Holden Rohrer}
\bigskip

\noindent{\bf Collaborators:} None

\section{Judson 5.4: 1b, 2c, 2p, 3a, 3c, 24}

\problem{1b.}

Write the following permutation in cycle notation:
$$\pmatrix{1&2&3&4&5\cr 2&4&1&5&3}.$$

\answer
This is $(1 2 4 5 3).$
\endanswer

\problem{2c.}

Compute $(1 4 3)(2 3)(2 4).$

\answer
$$\pmatrix{1&2&3&4\cr 2&3&1&4}$$
\endanswer

\problem{2p.}

Compute $[(1 2 3 5)(4 6 7)]^{-1}.$

\answer
$$\pmatrix{1&2&3&4&5&6&7\cr 5&1&2&7&3&4&6}$$
\endanswer

\problem{3a.}
Express the following permutation as a product of transpositions and
identify it as even or odd: $(1 4 3 5 6).$

\answer
$$(1 4 3 5 6) = (1 4)(4 3)(3 5)(5 6),$$
and since there are 4 transpositions, this is an even permutation.
\endanswer

\problem{3c.}

Express the following permutation as a product of transpositions and
identify it as even or odd: $(1 4 2 6)(1 4 2).$

\answer
$$(1 4 2 6)(1 4 2) = (1 4)(4 2)(2 6)(1 4)(4 2),$$
and since there are 5 transpositions, this is an odd permutation.

\problem{24.}

Show that a 3-cycle is an even permutation.

\answer
Let us have a 3-cycle $(a_1 a_2 a_3).$
This can be written as $(a_1 a_2)(a_2 a_3)$ because $a_2$ ends in the
position of $a_3,$ $a_1$ ends in the position of $a_2,$ and $a_3$ ends
in the position of $a_1.$
This is two transpositions, so this is an even permutation.
\endanswer

\section{Judson 6.5: 5d, 5b}

\problem{5d.}

List the left and right cosets of the subgroups of $A_4$ in $S_4.$

\answer
The left and right cosets are $\{A_4, (1\,2)A_4\}.$
\endanswer

\problem{5b.}

List the left and right cosets of the subgroups of $\langle 3\rangle$ in
$U(8).$

\answer
$\langle 3\rangle = \{{\rm id}, 3\},$ and since this group is abelian,
it has the same left and right cosets.
$5\langle 3\rangle = \{5, 7\},$ and this completes the partition of the
group.
\endanswer

\section{Problem not from the textbook}

\problem{1.}

Let $H$ be a subgroup of $G$ and suppose that $g_1,g_2\in G.$
Prove that $g_1H = g_2H$ if and only if $g_2\in g_1H.$

\answer
Let $H$ be a subgroup of $G$ and $g_1,g_2\in G.$
We will show that $g_1H = g_2H$ if and only if $g_2\in g_1H.$

$(\Rightarrow)$

Let $g_1H = g_2H.$
We will show that $g_2\in g_1H.$

$e\in H,$ so $g_2e = g_2\in g_2H,$ and by equality, $g_2\in g_1H.$

$(\Leftarrow)$

Let $g_2 \in g_1H.$
This means there is $h\in H$ such that $g_2 = g_1h.$
We then know that $g_2H = g_1hH = g_1H$ because $hH = H$ by group
closure.

\endanswer
\bye