aboutsummaryrefslogtreecommitdiff
path: root/gupta/hw12.tex
blob: 5ae4d54db6c29f980213f7cefd664c55d48db9ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
\newfam\bbold
\def\bb#1{{\fam\bbold #1}}
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\font\bigbf=cmbx12 at 24pt

\def\answer{\smallskip{\bf Answer.}\par}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}
\let\endanswer\endproof
\def\section#1{\vskip18pt plus 6pt minus 6pt\vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in%
\noindent{\bf #1}}
\let\impl\to
\def\nmid{\hskip-3pt\not\hskip2.5pt\mid}
\def\problem#1{\bigskip\par\penalty-100\item{#1}}

\headline{\vtop{\hbox to \hsize{\strut Math 2106 - Dr. Gupta\hfil Due Thursday
2022-04-26 at 11:59 pm}\hrule height .5pt}}

\centerline{\bigbf Homework 12 - Holden Rohrer}
\bigskip

\noindent{\bf Collaborators:} None

\section{Ross Chapter 2, 8.1d, 8.2c, 8.7b}

\problem{8.1d} Prove that $\lim {n+6\over n^2-6} = 0.$

\answer
Let $\epsilon > 0.$
We will show $N$ such that for all $n>N,$ $|{n+6\over n^2-6}-0| <
\epsilon.$

Where $n>6,$
$$|{n+6\over n^2-6}| = {n+6\over n^2-6},$$
and $n^2-6>n^2-36,$ so
$${n+6\over n^2-6} < {n+6\over n^2-36} = {1\over n-6}.$$
Choosing $n > N = 6+1/\epsilon,$ and since $n-6 > N-6,$
$${1\over n-6} < {1\over N-6} = {1\over 6+1/\epsilon-6} = {1\over
1/\epsilon} = \epsilon,$$
showing that $\lim {n+6\over n^2-6} = 0.$
\endanswer

\problem{8.2c} Find the limit of $c_n = {4n+3\over 7n-5}$ and then prove
your claim.

\answer

$c_n$ converges to $4/7.$

Let $\epsilon > 0.$
For all
$$n > N = {41\over 49\epsilon} + {5\over 7},$$
we can show that $|c_n-4/7| < \epsilon.$
$$|c_n-4/7| = \left|{4n+3\over 7n-5}-{4\over 7}\right| = \left|{28n+21 -
(28n-20)\over 49n-35}\right| = \left|{41\over 49n-35}\right|,$$
and from $n > N,$ (and where $N\geq 1$) $49n-35 > 49N-35 > 0,$ so
$$\left|{41\over 49n-35}\right| > {41\over 49N-35} =
{41\over 49({41\over 49\epsilon}+{5\over 7})-35} =
{41\over {41\over\epsilon} + 35-35} =
{41\epsilon\over 41} = \epsilon.$$
We have now shown that $\lim c_n = 4/7.$

\endanswer

\problem{8.7b} Show that $s_n = (-1)^n n$ does not converge.

\answer
{\bf Disproof.}

Assume for the sake of contradiction that $s_n$ converges to $s.$
Let $\epsilon = 1.$
We must have $N$ such that for all $n>N,$ $|s_n-s| < 1$ (implying also
$|s_{n+1}-s| < 1$).
However,
$$|s_n-s_{n+1}| = |s_n-s+s-s_{n+1}| \leq |s_n-s| + |s_{n+1}-s| < 1 + 1 =
2.$$
Yet, $|s_{n+1}-s_n| = |(-1)^n(-(n+1)-n)| = 2n+1,$
and where $n>1,$ we obtain $2n+1>3$ and from the earlier inequality
$2n+1<2,$ completing a contradiction.
We have then shown that $s_n$ does not converge.
\endanswer

\bye