aboutsummaryrefslogtreecommitdiff
path: root/gupta/hw2.tex
blob: 922703a5e27492970f8319bbf26c5a0a8998c6af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
\documentclass[10pt,twoside]{article}

\usepackage{amssymb,amsmath,amsthm,amsfonts, epsfig, graphicx, dsfont,
  bbm, bbold, url, color, setspace, multirow,pinlabel,tikz,pgfplots}
\usepackage[all]{xy}

\usepackage{fancyhdr} \setlength{\voffset}{-1in}
\setlength{\topmargin}{0in} \setlength{\textheight}{9.5in}
\setlength{\textwidth}{6.5in} \setlength{\hoffset}{0in}
\setlength{\oddsidemargin}{0in} \setlength{\evensidemargin}{0in}
\setlength{\marginparsep}{0in} \setlength{\marginparwidth}{0in}
\setlength{\headsep}{0.25in} \setlength{\headheight}{0.5in}
\pagestyle{fancy}

\onehalfspace

\fancyhead[LO,LE]{Math 2106 - Dr. Gupta} \fancyhead[RO,RE]{Due Thursday 1/20/2022 at 11:59 pm}
\chead{\textbf{}} \cfoot{}
\fancyfoot[LO,LE]{} \fancyfoot[RO,RE]{Page \thepage\ of
  \pageref{LastPage}} \renewcommand{\footrulewidth}{0.5pt}
\parindent 0in

\makeatletter
\def\old@comma{,}
\catcode`\,=13
\def,{%
  \ifmmode%
    \old@comma\discretionary{}{}{}%
  \else%
    \old@comma%
  \fi%
}
\makeatother

\let\implies\Rightarrow
\def\lnot{{\sim}}

%% ------------------------------------------------------%%
%% -------------------Begin Document---------------------%%
%% ------------------------------------------------------%%
\begin{document}

\begin{center}
    \huge{\bf{Homework 2} - Holden Rohrer}
\end{center}

\medskip

\noindent \large{\textbf{Collaborators:}}

\medskip

\begin{itemize}
	\item Hammack 1.1: 16, 28, 52
	\begin{itemize}
	    \item[16.] Write the set $\{6a + 2b ~|~ a, b \in \mathbb Z\}$ by listing its elements between curly braces.
	    \begin{proof}[Answer]
            If and only if $x$ is in this set, $x+6$ and $x+2$ are in
            this set. $0$ is in this set with $a=0$ and $b=0.$ This is
            the set of even numbers $\{\ldots,-4,-2,0,2,4,\ldots\}.$
	    \end{proof}
        \item[28.] Write the set $\{\ldots, -\frac32, -\frac34, 0,
            \frac34, \frac32, \frac94, 3, \frac{15}4, \frac92\}$ in
            set-biulder notation.
        \begin{proof}[Answer]
            This set is $\{\frac34 x : x \in \mathbb Z\}.$
        \end{proof}
        \item[52.] Sketch the set of points $\{(x,y)\in\mathbb R^2 :
            (y-x^2)(y+x^2) = 0\}.$
        \begin{proof}[Answer]
            This set is the union of the two graphs $y = x^2$ and $y =
            -x^2.$
            \begin{figure}[h!]
            \centering
            \begin{tikzpicture}[scale=3]
                \draw[<->] (-1,0) -- (1,0) node[right] {$x$};
                \draw[<->] (0,-1) -- (0,1) node[above] {$y$};
                \draw (0,0) parabola (1,1);
                \draw (0,0) parabola (-1,1);
                \draw (0,0) parabola (1,-1);
                \draw (0,0) parabola (-1,-1);
            \end{tikzpicture}
            \end{figure}
            %%TO DRAW
        \end{proof}
	\end{itemize}
	\item Hammack 1.2: 2
    \begin{itemize}
        \item[2.] Suppose $A = \{\pi,e,0\}$ and $B = \{0,1\}.$
        \begin{itemize}
            \item[(a)] Write out $A\times B.$
            \begin{proof}[Answer]
                $A\times B = \{(\pi,0), (\pi, 1), (e,0), (e,1), (0,0),
                (1,0)\}.$
            \end{proof}
            \item[(b)] Write out $B\times A.$
            \begin{proof}[Answer]
                $B\times A = \{(0,\pi), (1,\pi), (0,e), (1,e), (0,0),
                (1,0)\}.$
            \end{proof}
            \item[(c)] Write out $A\times A.$
            \begin{proof}[Answer]
                $A\times A = \{(\pi,\pi), (\pi,e), (\pi, 0), (e,\pi),
                (e,e), (e,0), (0,\pi), (0,e), (0,0)\}.$
            \end{proof}
            \item[(d)] Write out $B\times B.$
            \begin{proof}[Answer]
                $B\times B = \{(0,0), (0,1), (1,0), (1,1)\}.$
            \end{proof}
            \item[(e)] Write out $A\times \emptyset.$
            \begin{proof}[Answer]
                $A\times\emptyset = \emptyset.$
            \end{proof}
            \item[(f)] Write out $(A\times B)\times B.$
            \begin{proof}[Answer]
                $(A\times B)\times B = \{((\pi,0),0), ((\pi, 1),0),
                ((e,0),0), ((e,1),0), ((0,0),0), ((0,1),0),
                ((\pi,0),1), ((\pi, 1),1),
                ((e,0),1), ((e,1),1), ((0,0),1), ((0,1),1)\}.$
            \end{proof}
            \item[(g)] Write out $A\times(B\times B).$
            \begin{proof}[Answer]
                $A\times(B\times B) = \{(\pi,(0,0)), (\pi,(1,0)),
                (e,(0,0)), (e,(1,0)), (0,(0,0)), (0,(1,0)),
                (\pi,(0,1), (\pi,(1,1)),
                (e,(0,1)), (e,(1,1)), (0,(0,1)), (0,(1,1))\}.$
            \end{proof}
            \item[(h)] Write out $A\times B\times B.$
            \begin{proof}[Answer]
                $A\times B\times B = \{(\pi,0,0), (\pi, 1,0),
                (e,0,0), (e,1,0), (0,0,0), (0,1,0),
                (\pi,0,1), (\pi, 1,1),
                (e,0,1), (e,1,1), (0,0,1), (0,1,1)\}.$
            \end{proof}
        \end{itemize}
    \end{itemize}
	\item Hammack 1.3: 2, 8, 10, 16
    \begin{itemize}
        \item[2.] List all subsets of $\{1,2,\emptyset\}.$
        \begin{proof}[Answer]
            The subsets are $\emptyset, \{1\}, \{2\}, \{\emptyset\},
            \{1,2\}, \{1,\emptyset\}, \{2,\emptyset\},
            \{1,2,\emptyset\}.$
        \end{proof}
        \item[8.] List all subsets of $\{\{0,1\}, \{0,1,\{2\}\},
            \{0\}\}.$
        \begin{proof}[Answer]
            The subsets are $\emptyset, \{\{0,1\}\}, \{\{0,1,\{2\}\}\},
            \{\{0\}\}, \{\{0,1\},\{0\}\}, \{\{0,1\},\{0,1,\{2\}\}\},
            \{\{0\},\{0,1,\{2\}\}\}, \{\{0,1\},\{0\},\{0,1,\{2\}\}\}.$
        \end{proof}
        \item[10.] Write out $\{X\subseteq N : |X| \leq 1\}.$
        \begin{proof}[Answer]
            This set is $\{-1,0,1\}.$
        \end{proof}
        \item[16.] Decide if $\{(x,y) : x^2 - x = 0\} \subseteq
            \{(x,y) : x-1 = 0\}$ is true or false.
        \begin{proof}[Answer]
            False. $(0,0)$ is in the first set but not in the second
            set, so it cannot be a subset.
        \end{proof}
    \end{itemize}
	\item Hammack 1.4: 6, 14, 16, 18, 20
    \begin{itemize}
        \item[6.] Find $\mathcal P(\{1,2\})\times\mathcal P(\{3\}).$
        \begin{proof}[Answer]
            This is $\{(\emptyset,\emptyset), (\{1\},\emptyset),
            (\{2\},\emptyset), (\{1,2\},\emptyset), (\emptyset, \{3\}),
            (\{1\}, \{3\}), (\{2\}, \{3\}), (\{1,2\}, \{3\}).$
        \end{proof}
        \item[14.] Suppose $|A| = m$ and $|B| = n.$ Find
            $|\mathcal P(\mathcal P(A))|.$
        \begin{proof}[Answer]
            $|\mathcal P(\mathcal P(A))| = 2^{|\mathcal P(A)|} =
            2^{2^m}.$
        \end{proof}
        \item[16.] Suppose $|A| = m$ and $|B| = n.$ Find
            $|\mathcal P(A)\times \mathcal P(B)|.$
        \begin{proof}[Answer]
            This is $|\mathcal P(A)|\cdot|\mathcal P(B)| = 2^{|\mathcal
            P(A)|}2^{|\mathcal P(B)|} = 2^{nm}$
        \end{proof}
        \item[18.] Suppose $|A| = m$ and $|B| = n.$ Find
            $|\mathcal P(A\times \mathcal P(B))|.$
        \begin{proof}[Answer]
            By similar techniques, this set has cardinality $2^{m2^n}.$
        \end{proof}
        \item[20.] Suppose $|A| = m$ and $|B| = n.$ Find $|\{X\subseteq\mathcal P(A) : |X|\leq 1\}|.$
        \begin{proof}[Answer]
            This is $\emptyset$ and every one-element subset of
            $\mathcal P(A),$ so it has cardinality $2^m + 1.$
        \end{proof}
    \end{itemize}
	\item Hammack 1.6: 2
    \begin{itemize}
        \item[2.] Let $A = \{0,2,4,6,8\}$ and $B = \{1,3,5,7\}$ have
            universal set $U = \{0,1,2,\ldots,8\}.$ Find:
        \begin{itemize}
            \item[(a)] $\bar A = B.$
            \item[(b)] $\bar B = A.$
            \item[(c)] $A\cap\bar A = \emptyset.$
            \item[(d)] $A\cup\bar A = U.$
            \item[(e)] $A - \bar A = A.$
            \item[(f)] $\bar{A\cup B} = \emptyset.$
            \item[(g)] $\bar A \cap \bar B = \emptyset.$
            \item[(h)] $\bar{A\cap B} = U.$
            \item[(i)] $\bar A \times B = B^2.$
        \end{itemize}
        %\begin{proof}[Answer]
        %\end{proof}
    \end{itemize}
	\item Hammack 1.8: 4, 10, 12, 14
    \begin{itemize}
        \item[4.] For each $n\in \mathbb N,$ let $A_n = \{-2n,0,2n\}.$
        \begin{itemize}
            \item[(a)] $\bigcup_{i\in N} A_i = \{2n:n\in\mathbb N\}$
            \item[(b)] $\bigcap_{i\in N} A_i = \{0\}$
        \end{itemize}
        \item[10.]
        \begin{itemize}
            \item[(a)] $\bigcup_{i\in [0,1]} [x,1]\times[0,x^2] =
                \{(x,y)\in \mathbb [0,1]^2 : y \leq x^2\}.$
            \item[(b)] $\bigcap_{i\in [0,1]} [x,1]\times[0,x^2] =
                \{(1,0)\},$ as can be seen from the intersection of the
                $[0,1]\times[0,0]$ and $[1,1]\times[0,1]$ elements.
        \end{itemize}
        \item[12.] If $\bigcap_{\alpha\in I} A_\alpha =
            \bigcup_{\alpha\in I} A_\alpha,$ what do you think can be
            said about the relationships between the sets $A_{\alpha}?$
        \begin{proof}[Answer]
            For any $\alpha,\beta \in I,$ $A_\alpha = A_\beta.$
        \end{proof}
        \item[14.] If $J\neq\emptyset$ and $J\subseteq I,$ does it
            follow that $\bigcap_{\alpha\in I} A_\alpha \subseteq
            \bigcap_{\alpha\in J} A_\alpha?$ Explain.
        \begin{proof}[Answer]
            Yes, this does follow because
            $\bigcap_{\alpha\in I} A_\alpha = \bigcap_{\alpha\in J}
            A_\alpha \cap \bigcap_{\beta\in I - J} A_\beta
            \subseteq \bigcap_{\alpha\in J} A_\alpha.$
        \end{proof}
    \end{itemize}
	\item Hammack 2.3: 2, 6
    \begin{itemize}
        \item[2.] Convert the following sentence into the form ``{\em If
            P, then Q}.'' ``For a function to be continuous, it is
            sufficient that it is differentiable.''
        \begin{proof}[Answer]
            ``If a function is differentiable, that function is
            continuous.''
        \end{proof}
        \item[6.] Convert the following sentence into the form ``{\em If
            P, then Q}.'' ``Whenever a surface has only one side, it is
            non-orientable.''
        \begin{proof}[Answer]
            ``If a surface has one side, that surface is
            non-orientable.''
        \end{proof}
    \end{itemize}
	\item Hammack 2.5: 10
    \begin{itemize}
        \item[10.] Suppose the statement $((P\land Q)\lor R) \implies
            (R\lor S)$ is false. Find the truth values of $P$, $Q,$ $R,$
            and $S.$
        \begin{proof}[Answer]
            $P=Q={\rm True}$ and $R=S={\rm False}$ make this statement
            false.
        \end{proof}
    \end{itemize}
	\item Hammack 2.6: 14
    \begin{itemize}
        \item[14.] Decide whether or not $P\land(Q\lor\lnot Q)$ and
            $(\lnot P) \implies (Q\land\lnot Q)$ are logically
            equivalent.
        \begin{proof}[Answer]
            These are logically equivalent. $Q\lor ~Q \equiv T$ and
            $Q\land ~Q \equiv F,$ giving us simplified expressions
            $P\land T \equiv P$ and $\lnot P \implies F \equiv P,$ so
            these are logically equivalent expressions.
        \end{proof}
    \end{itemize}
	\item Problems not from the textbook
  	\begin{enumerate}
         \item Use truth tables to prove that each of the following compound propositions is \emph{not} a tautology. These implication are common logical fallacies (errors in reasoning) since the conclusion does not follow from the hypotheses.
         \begin{enumerate}
              \item $[(P\implies Q)\land Q]\implies P$
              \begin{proof}[Answer]
                  \begin{tabular}{|c|c|c|c|c|c|}
                      \hline
                      $P$ & $Q$ & $P \implies Q$ & $(P \implies Q)\land
                      Q$ & $[(P\implies Q)\land Q] \implies P$ \\\hline

                      T & T & T & T & T\\\hline
                      T & F & F & F & T\\\hline
                      F & T & T & T & F\\\hline
                      F & F & T & F & T\\\hline
                  \end{tabular}
              \end{proof}
  			  \item $[(P\implies Q)\land\lnot{P}]\implies\lnot{Q}$
              \begin{proof}[Answer]
                  \begin{tabular}{|c|c|c|c|c|c|}
                      \hline
                      $P$ & $Q$ & $P \implies Q$ & $(P \implies Q)\land
                      \lnot P$ & $[(P\implies Q)\land \lnot P] \implies
                      \lnot Q$ \\\hline

                      T & T & T & F & T\\\hline
                      T & F & F & F & T\\\hline
                      F & T & T & T & F\\\hline
                      F & F & T & T & T\\\hline
                  \end{tabular}
              \end{proof}
 		\end{enumerate}
		\item Use truth tables to prove that each of the following compound propositions is a tautology. These are the four most important ``rules of inference'' in propositional logic. Each rule gives a conclusion that follows from a set of hypotheses and thus give building blocks for correct proofs.
 		 \begin{enumerate}
             \item $[P\land(P\implies Q)]\implies Q$
             \begin{proof}[Answer]
                  \begin{tabular}{|c|c|c|c|c|c|}
                      \hline
                      $P$ & $Q$ & $P \implies Q$ &
                      $P\land (P \implies Q)$ &
                      $[P\land (P\implies Q)] \implies Q$ \\\hline

                      T & T & T & T & T\\\hline
                      T & F & F & F & T\\\hline
                      F & T & T & F & T\\\hline
                      F & F & T & F & T\\\hline
                  \end{tabular}
             \end{proof}
			 \item $[\lnot Q\land(P\implies Q)]\implies\lnot{P} $
             \begin{proof}[Answer]
                  \begin{tabular}{|c|c|c|c|c|c|}
                      \hline
                      $P$ & $Q$ & $P \implies Q$ & $(P \implies Q)\land
                      \lnot P$ & $[(P\implies Q)\land \lnot P] \implies
                      \lnot Q$ \\\hline

                      T & T & T & F & T\\\hline
                      T & F & F & F & T\\\hline
                      F & T & T & T & F\\\hline
                      F & F & T & T & T\\\hline
                  \end{tabular}
             \end{proof}
			 \item $[(P\implies Q)\land(Q\implies R)]\implies(P\implies R)$
             \begin{proof}[Answer]
                 Let $(1)$ be $(P\implies Q)\land(Q\implies R).$

                  \begin{tabular}{|c|c|c|c|c|c|c|c|}
                      \hline
                      $P$ & $Q$ & $R$ & $P \implies Q$ &
                      $Q \implies R$ &
                      $(1)$ &
                      $P \implies R$ &
                      $(1) \implies (P\implies R)$ \\\hline

                      T & T & T & T & T & T & T & T\\\hline
                      T & T & F & T & F & F & F & T\\\hline
                      T & F & T & F & T & F & T & T\\\hline
                      T & F & F & F & T & F & F & T\\\hline
                      F & T & T & T & T & T & T & T\\\hline
                      F & T & F & T & F & F & T & T\\\hline
                      F & F & T & T & T & T & T & T\\\hline
                      F & F & F & T & T & T & T & T\\\hline
                      % to break up lol
                  \end{tabular}
             \end{proof}
             \item $[(P\lor Q)\land\lnot{P}]\implies Q$
             \begin{proof}[Answer]
                  \begin{tabular}{|c|c|c|c|c|c|}
                      \hline
                      $P$ & $Q$ & $P \lor Q$ & $(P \lor Q)\land
                      \lnot P$ & $[(P\lor Q)\land \lnot P] \implies Q$
                      \\\hline

                      T & T & T & F & T\\\hline
                      T & F & T & F & T\\\hline
                      F & T & T & T & T\\\hline
                      F & F & F & F & T\\\hline
                  \end{tabular}
             \end{proof}
		\end{enumerate}
	\end{enumerate}
\end{itemize}

\label{LastPage}
\end{document}