aboutsummaryrefslogtreecommitdiff
path: root/gupta/hw5.tex
blob: bb1bd43014582ada9b3365d74b3de2aceefbed22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
\newfam\bbold
\def\bb#1{{\fam\bbold #1}}
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\font\bigbf=cmbx12 at 24pt

\def\answer{\smallskip{\bf Answer.}\par}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}
\let\endanswer\endproof
\def\section#1{\medskip\vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in%
\noindent{\bf #1}}
\let\impl\to
\def\nmid{\hskip-3pt\not\hskip2.5pt\mid}
\def\problem#1{\par\penalty-100\item{#1}}

\headline{\vtop{\hbox to \hsize{\strut Math 2106 - Dr. Gupta\hfil Due Thursday
2022-02-17 at 11:59 pm}\hrule height .5pt}}

\centerline{\bigbf Homework 5 - Holden Rohrer}
\bigskip

\noindent{\bf Collaborators:} None

\section{Hammack 7: 6, 9, 12}

\problem{6.} Suppose $x,y\in\bb R.$ Then $x^3+x^2y = y^2+xy$ if and only if
$y = x^2$ or $y = -x.$

$x^2(x+y) = y(x+y).$
\answer
$(\Rightarrow)$

Let $x^3 + x^2y = y^2+xy.$
We then have $x^2(x+y) = y(x+y).$
If $y = -x,$ $x+y = 0 \impl x^2(x+y) = y(x+y).$
Otherwise, we can divide by $x+y$ because it is nonzero, giving
$y = x^2.$
Therefore, $y=-x$ or $y=x^2.$

$(\Leftarrow)$

Let $y = -x$ or $y = x^2.$
We will first consider the case $y = -x,$ then the case $y = x^2.$

With $y = -x,$ $x^3 + x^2y = x^3 - x^3 = 0 = x^2 - x^2 = y^2 + xy.$

If $y = x^2,$ $x^3 + x^2y = x^3 + x^4 = x^3 + x^4 = xy + y^2.$
\endanswer

\problem{9.} Suppose $a\in\bb Z.$ Prove that $14\mid a$ if and only if
$7\mid a$ and $2\mid a.$

\answer
$(\Rightarrow)$

Let $14\mid a.$
This gives $a = 14k$ for some integer $k.$
$a = 2(7k),$ so with $7k\in\bb Z,$ we get $2\mid a.$
Similarly, $a = 7(2k),$ so with $2k\in\bb Z,$ we get $7\mid a.$

$(\Leftarrow)$

Let $7\mid a$ and $2\mid a.$
These give $a = 7j$ for some $j$ and $a = 2k$ for some integers $j$ and
$k.$
A product of odd number $7$ and odd number $j$ cannot be even (and $a$
is even because $2\mid a$), so $j$ must be even.
Thus, there exists $l\in\bb Z$ such that $j = 2l.$
This gives $a = 7(2l) = 14l \to 14\mid a.$
\endanswer

\problem{12.} There exist a positive real number $x$ for which $x^2 < \sqrt
x.$

\answer
Observe that $x = 1/4$ gives $x^2 = 1/16$ and $\sqrt x = 1/2,$ so $1/16
< 1/2.$
\endanswer

\section{Hammack 8: 12, 22, 28}

\problem{12.} If $A,$ $B,$ and $C$ are sets, then $A-(B\cap C) =
(A-B)\cup(A-C).$

\answer
$(\subseteq)$

Let $x\in A - (B\cap C).$
This gives us $x\in A$ and $x\not\in B\cap C.$
We get $x\not\in B$ or $x\not\in C.$
WLOG, let $x\not\in B.$
$x\in A$ and $x\not\in B,$ so $x\in A-B,$ so $x\in (A-B)\cup(A-C).$

$(\supseteq)$

Let $x\in (A-B)\cup (A-C).$
This gives $x\in A-B$ or $x\in A-C.$
WLOG, let $x\in A-B.$
Therefore, $x\in A$ and $x\not\in B.$
This implies $x\not\in B\cap C,$ so $x\in A-(B\cap C).$

Since we have $A-(B\cap C) \subseteq (A-B)\cup(A-C)$ and $(A-B)\cup(A-C)
\subseteq A-(B\cap C),$
we obtain $$A-(B\cap C) = (A-B)\cup(A-C).$$
\endanswer

\problem{22.} Let $A$ and $B$ be sets. Prove that $A\subseteq B$ if and
only if $A\cap B = A.$

\answer
$(\Rightarrow)$

Let $A\subseteq B.$
Let $x\in A.$
By subset, $x\in B.$
And if and only if $x\in A$ and $x\in B,$ $x\in A\cap B,$ so $A = A\cap
B.$

$(\Leftarrow)$

Let $A\cap B = A.$
This implies $A\subseteq A\cap B,$ or $x\in A\impl x\in A\cap B\impl
x\in B.$
$x\in A\impl x\in B$ is the definition of $A\subseteq B.$
\endanswer

\problem{28.} Prove $\{12a+25b:a,b\in\bb Z\} = \bb Z.$

\answer
Let $A = \{12a+25b:a,b\in\bb Z\}.$ If $x\in A,$ $x\in\bb Z$ because the
integers are closed under addition and mulitplication.

If $x\in\bb Z,$ let $b = x$ and $a = -2x,$ giving us $12(-2x) + 25x =
x\in A.$

Therefore, since $A\subseteq\bb Z$ and $\bb Z\subseteq A,$ these two
sets are equal.
\endanswer

\section{Hammack 9: 6, 28, 30, 34}
Prove or disprove each of the following statements.

\problem{6.} If $A,$ $B,$ $C,$ and $D$ are sets, then $(A\times
B)\cup(C\times D) = (A\cup C)\times(B\cup D).$

\answer
{\bf Disproof.}

Let $A = B = \{1\}$ and $C = D = \{2\}.$
The set $A\times B = \{(1,1)\}.$
The set $C\times D = \{(2,2)\}.$
And the set $A\cup C = B\cup D = \{1,2\}.$

$$(A\times B)\cup(C\times D) = \{(1,1),(2,2)\} \neq
\{(1,1),(1,2),(2,1),(2,2)\} = (A\cup C)\times(B\cup D).$$
\endanswer

\problem{28.} Suppose $a,b\in\bb Z.$ If $a\mid b$ and $b\mid a,$ then $a =
b.$

\answer
We will show this by contrapositive.
Let $a\neq b.$ We will show that $a\nmid b$ or $b\nmid a.$

WLOG, $a > b.$
Immediately, $a\nmid b.$
\endanswer

\problem{30.} There exist integers $a$ and $b$ for which $42a + 7b = 1.$

\answer
{\bf Disproof.}

Let $a,b\in\bb Z.$
For the sake of contradiction, assume $42a + 7b = 1.$
Dividing by 7, $6a + b = 1/7.$
By closure of the integers, $6a+b\in\bb Z,$ and $1/7\not\in\bb Z,$
giving a contradiction.
\endanswer

\problem{34.} If $X\subseteq A\cup B,$ then $X\subseteq A$ or $X\subseteq
B.$

\answer
{\bf Disproof.}

Let $A = \{1\},$ $B = \{2\},$ and $X = A\cup B.$
Immediately, $X\subseteq A\cup B.$
And then, $2\in X,$ but $2\not\in A,$ so $X\not\subseteq A.$
Also, $1\in X,$ but $1\not\in B,$ so $X\not\in B.$
\endanswer

\section{Problem not from the textbok}

\problem{1.} Let $A,$ $B,$ and $C$ be arbitrary sets. Prove that if
$A-C\not\subseteq A-B,$ then $B\not\subseteq C.$

\answer
We will prove this by contrapositive.
Let $B\subseteq C.$ We will show that $A-C\subseteq A-B.$

If $x\in B,$ $x\in C,$ so by contrapositive, if $x\not\in C,$ $x\not\in
B.$

Let $y\in A-C.$
By definition of setminus, $y\in A$ and $y\not\in C.$
As established, this implies $y\not\in B.$
Therefore, with $y\in A$ and $y\not\in B,$ $y\in A-B,$ so
$A-C\subseteq A-B.$
\endanswer

\bye