1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
\newfam\bbold
\def\bb#1{{\fam\bbold #1}}
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\font\bigbf=cmbx12 at 24pt
\def\answer{\smallskip{\bf Answer.}\par}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}
\let\endanswer\endproof
\def\section#1{\medskip\vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in%
\noindent{\bf #1}}
\let\impl\to
\def\nmid{\hskip-3pt\not\hskip2.5pt\mid}
\def\problem#1{\par\penalty-100\item{#1}}
\headline{\vtop{\hbox to \hsize{\strut Math 2106 - Dr. Gupta\hfil Due Thursday
2022-03-03 at 11:59 pm}\hrule height .5pt}}
\centerline{\bigbf Homework 7 - Holden Rohrer}
\bigskip
\noindent{\bf Collaborators:} None
\section{Hammack 11.3: 2, 4}
\problem{2.}
List all the partitions of the set $A = \{a,b,c\}.$ Compare your answer
to the answer to Exercise 6 of Section 11.2
\answer
All partitions are $\{\{\{a,b,c\}\}, \{\{a,b\},\{c\}\},
\{\{a\},\{b,c\}\}, \{\{b\}, \{a,c\}\}, \{\{a\},\{b\},\{c\}\}\}.$
There is exactly one of these for each of the equivalence relations on
exercise 6.
\endanswer
\problem{4.}
Suppose $P$ is a partition of set $A.$ Define a relation $R$ on $A$ by
declaring $xRy$ if and only if $x, y \in X$ for some $X\in P.$ Prove $R$
is an equivalence relation on $A.$
Then prove that $P$ is the set of equivalence classes of $R.$
\answer
We want to show that $R$ is an equivalence relation. We will show that
it is reflexive, symmetric, and transitive.
\smallskip
(Reflexive)
Let $a\in A.$ We will show that $aRa.$
$P$ is a partition of $A,$ so $\bigcup_{p\in P} p = A,$ and so there
must be $X\in A$ s.t. $a,a\in X.$
We thus obtain $aRa.$
\smallskip
(Symmetric)
Let $a,b\in A$ such that $aRb.$ We will show that $bRa.$
From the definition of $R,$ there is $X\in P$ s.t. $a\in X$ and $b\in
X.$
Since $b,a\in X,$ $bRa.$
\smallskip
(Transitive)
Let $a,b,c\in A$ such that $aRb$ and $bRc.$ We will show tht $aRc.$
From the definition of $R,$ there are $X,Y\in P$ s.t. $a,b\in X$ and
$b,c\in Y,$ but if we assume $X\neq Y,$ since $P$ is a partition, $X\cap
Y = \emptyset,$ so either $b\not\in X$ or $b\not\in Y,$ so we must know
that $X = Y.$
Therefore, $c\in X,$ ($a,c\in X$) and $aRc.$
\medskip
We also want to show that the equivalence classes of $R$ is $P.$
Let $Q$ be the equivalence classes of $R,$ defined as
$\{\{x\in A: xRa\} : a\in A\}.$
We will show that $P = Q.$
\smallskip
$(Q\subseteq P)$
Let $a\in A.$
By definition of $Q,$ $X = \{x\in A: xRa\} \in Q.$
$xRa$ iff $x,a\in Y$ for some $Y\in P.$
We will show that $X\subseteq Y$ and $Y\subseteq X$ to show that $X =
Y$ and thus $X\in P.$
$x\in X$ gives $xRa,$ so $x\in Y,$ so $X\subseteq Y.$
$x\in Y$ gives $xRa,$ so $x\in X,$ and $Y\subseteq X.$
Therefore, $X = Y,$ and we have shown $Q\subseteq P.$
\smallskip
$(Q\supseteq P)$
Let $a\in A.$
As established earlier, for some $X\in P,$ the element $a\in X,$ and
$xRa$ iff $x\in X,$ so $X = \{x\in A: xRa\} \in Q,$ proving $P\subseteq
Q.$
We have now shown that $R$ is an equivalence relation and the
equivalence classes of $R$ is $P.$
\endanswer
\section{Hammack 11.4: 4, 6}
\problem{4.}
Write the addition and multiplication tables for $\bb Z_6.$
\answer
{\tabskip5pt
\line{\hfil
\vbox{\halign{&\strut $#$\cr
\times &[0]&[1]&[2]&[3]&[4]&[5]\cr
[0] &[0]&[0]&[0]&[0]&[0]&[0]\cr
[1] &[0]&[1]&[2]&[3]&[4]&[5]\cr
[2] &[0]&[2]&[4]&[0]&[2]&[4]\cr
[3] &[0]&[3]&[0]&[3]&[0]&[3]\cr
[4] &[0]&[4]&[2]&[0]&[4]&[2]\cr
[5] &[0]&[5]&[4]&[3]&[2]&[1]\cr
}}
\hfil
\vbox{\halign{&\strut $#$\cr
+ &[0]&[1]&[2]&[3]&[4]&[5]\cr
[0]&[0]&[1]&[2]&[3]&[4]&[5]\cr
[1]&[1]&[2]&[3]&[4]&[5]&[0]\cr
[2]&[2]&[3]&[4]&[5]&[0]&[1]\cr
[3]&[3]&[4]&[5]&[0]&[1]&[2]\cr
[4]&[4]&[5]&[0]&[1]&[2]&[3]\cr
[5]&[5]&[0]&[1]&[2]&[3]&[4]\cr
}}\hfil
}}
\endanswer
\problem{6.}
Suppose $[a],[b]\in\bb Z_6,$ and $[a]\cdot[b]=[0].$ Is it necessarily
true that either $[a] = [0]$ or $[b]=[0]?$
\answer
No, it isn't. $[4],[3]\in\bb Z_6,$ and $[4]\neq [0]$ and $[3]\neq [0],$
but $[4]\cdot[3]=[12]=[0].$
\endanswer
\section{Hammack 12.1: 4, 6, 9, 12}
\problem{4.}
There are eight different functions $f: \{a,b,c\}\to\{0,1\}.$ List them
all. Diagrams will suffice.
\answer
$\{(a,0), (b,0), (c,0)\}$
$\{(a,0), (b,0), (c,1)\}$
$\{(a,0), (b,1), (c,0)\}$
$\{(a,0), (b,1), (c,1)\}$
$\{(a,1), (b,0), (c,0)\}$
$\{(a,1), (b,0), (c,1)\}$
$\{(a,1), (b,1), (c,0)\}$
$\{(a,1), (b,1), (c,1)\}$
\endanswer
\problem{6.}
Suppose $f: \bb Z \to \bb Z$ is defined as $f = \{(x,4x+5) : x\in\bb
Z\}.$ State the domain, codomain and range of $f.$ Find $f(10).$
\answer
The domain and codomain are $\bb Z,$ and the range is $\{4x+5 : x\in\bb
Z\}.$
$f(10) = 45.$
\endanswer
\problem{9.}
Consider the set $f=\{(x^2,x), x\in\bb R\}.$ Is this a function from
$\bb R$ to $\bb R?$ Explain.
\answer
$(1,-1)\in f,$ and $(1,1)\in f,$ so this is not a function because it
has multiple outputs for one input.
\endanswer
\problem{12.}
Is the set $\theta = \{\left((x,y),(3y,2x,x+y)\right) : x,y\in\bb R\}$ a
function? If so, what is its domain, codomain, and range?
\answer
The domain is $\bb R^2,$ the codomain is $\bb R^3,$ and the range is
$\{(3y,2x,x+y) : x,y\in\bb R\} = \{(x,y,z)\in\bb R^3 : 6z-3y-2x = 0\}.$
\endanswer
\section{Hammack 12.2: 4, 12, 14}
\problem{4.}
A function $f: \bb Z \to \bb Z \times \bb Z$ is defined as $f(n) = (2n,
n+3).$ Verify whether this function is injective and whether it is
surjective.
\answer
This function is injective but not surjective.
\smallskip
(Injective)
Let $m,n\in\bb Z$ such that $f(n)=f(m)$ or $(2n,n+3)=(2m,m+3).$
Therefore, $2n=2m \to n = m.$
\smallskip
(Surjective)
$(0, 4) \not\in f(\bb Z),$ so this function is not surjective.
\endanswer
\problem{12.}
Consider the function $\theta:\{0,1\}\times\bb N \to \bb Z$ defined as
$\theta(a,b) = a-2ab+b.$ Is $\theta$ injective? Is it surjective?
Bijective? Explain.
\answer
\smallskip
(Injective)
Let $a,c\in\{0,1\}$ and $b,d\in\bb N$ such that $\theta(a,b) =
\theta(c,d).$ We will show that $a=c$ and $b=d.$
We will deal with three cases:
($a=1$ and $c=1$)
$\theta(1,b) = 1-2b+b = 1-2d+d = \theta(1,d).$
The equality $1-2b+b = 1-2d+d$ becomes $b = d,$ showing that the
function is injective.
($a=0$ and $c=0$)
$\theta(0,b) = b = d = \theta(0,d),$ easily showing that $b=d$ and the
function is injective.
(WLOG, $a=1$ and $c=0$)
$\theta(1,b) = 1-2b+b = d = \theta(0,d).$
With $b,d\in\bb Z,$ $b+d \geq 2,$ so the rearranged equation
$1 = b+d$ is impossible.
\smallskip
(Surjective)
Let $n\in\bb Z.$ We will show that for some $a\in\{0,1\}$ and $b\in\bb
N,$ $\theta(a,b) = n.$
We will deal with two cases:
($n > 0$)
Let $a = 0$ and $b = n.$
$\theta(0,n) = 0-2(0)(n)+n = n.$
($n \leq 0$)
Let $a = 1$ and $b = -n+1.$
$\theta(1, -n+1) = 1-2(1)(-n+1) + (-n+1) = 1+2n-2-n+1 = n.$
Because $\theta$ is both injective and surjective, it is bijective.
\endanswer
\problem{14.}
Consider the function $\theta: {\cal P}(\bb Z) \to {\cal P}(\bb Z)$
defined as $\theta(X) = \bar X.$ Is $\theta$ injective? Is it
surjective? Bijective? Explain.
\answer
$\theta$ is injective and surjective.
\smallskip
(Injective)
Let $X$ and $Y$ be subsets of $\bb Z$ such that $\theta(X) = \theta(Y).$
$\bar X = \bar Y$ implies $\bar{\bar X} =
\bar{\bar Y}$ and $X = Y.$
\smallskip
(Surjective)
Let $X$ be a subset of $\bb Z.$ $\bar X$ maps through $\theta$ to
$X.$ $\theta(\bar X) = \bar{\bar X} = X.$
We have shown that $\theta$ is injective, surjective, and, therefore,
bijective.
\endanswer
\bye
|