1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
\newfam\bbold
\def\bb#1{{\fam\bbold #1}}
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\font\bigbf=cmbx12 at 24pt
\def\answer{\smallskip{\bf Answer.}\par}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}
\let\endanswer\endproof
\def\section#1{\vskip18pt plus 6pt minus 6pt\vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in%
\noindent{\bf #1}}
\let\impl\to
\def\nmid{\hskip-3pt\not\hskip2.5pt\mid}
\def\problem#1{\bigskip\par\penalty-100\item{#1}}
\headline{\vtop{\hbox to \hsize{\strut Math 2106 - Dr. Gupta\hfil Due Thursday
2022-03-17 at 11:59 pm}\hrule height .5pt}}
\centerline{\bigbf Homework 8 - Holden Rohrer}
\bigskip
\noindent{\bf Collaborators:} None
\section{Hammack 12.4: 2, 4, 6, 8}
\problem{2.} Suppose $A = \{1,2,3,4\},$ $B = \{0,1,2\},$ $C=\{1,2,3\}.$
Let $f: A\to B$ be
$$f = \left\{(1,0), (2,1), (3,2), (4,0) \right\},$$
and $g: B\to C$ be $g = \left\{(0,1),(1,1),(2,3)\right\}.$ Find
$g\circ f.$
\answer
$g\circ f = \left\{(0,0), (1,0), (2,2)\right\}.$
\endanswer
\problem{4.} Suppose $A = \{a,b,c\}.$ Let $f: A\to A$ be the function $f
= \left\{(a,c), (b,c), (c,c)\right\},$ and let $g: A\to A$ be the
function $g = \left\{(a,a), (b,b), (c,a)\right\}.$ Find $g\circ f$ and
$f\circ g.$
\answer
$g\circ f = \left\{(a,a), (b,a), (c,a)\right\},$ and $f\circ g =
\left\{(a,c), (b,c), (c,c)\right\}.$
\endanswer
\problem{6.} Consider the functions $f,g: \bb R\to \bb R$ defined as
$f(x) = {1\over x^2+1}$ and $g(x) = 3x+2.$ Find the formulas for $g\circ
f$ and $f\circ g.$
\answer
$f\circ g = {1\over (3x+2)^2+1}$ and $g\circ f = {3\over x^2+1}+2.$
\endanswer
\problem{8.} Consider the functions $f,g: \bb Z\times \bb Z \to \bb
Z\times \bb Z$ defined as $f(m,n) = (3m-4n, 2m+n)$ and $g(m,n) = (5m+n,
m).$ Find the formulas for $g\circ f$ and $f\circ g.$
\answer
$g\circ f = (3m-4(5m+n), 2m+n)$ and $f\circ g = (5(2m+n)+(3m-4n), 2m+n).$
\section{Hammack 12.5: 6, 8}
\problem{6.}
The function $f: \bb Z\times\bb Z \to \bb Z\times\bb Z$ defined by the
formula $f(m,n) = (5m+4n,4m+3n)$ is bijective. Find its inverse.
\answer
$f(m,n) = (r,s) = (5m+4n,4m+3n).$ Thus, $4r-5s = n$ and $4s-3r = m,$
so the inverse is $g(r,s) = (4r-5s, 4s-3r).$
\endanswer
\problem{8.} Is the function $\theta: {\cal P}(\bb Z)\to {\cal P}(\bb
Z)$ defined as $\theta(X) = \overline X$ bijective? If so, what is its
inverse?
\answer
Yes, $\theta$ is bijective. This was proven in the last homework.
The inverse $\theta^{-1}$ is $\theta$ since $\theta(\theta(X)) = X.$
\endanswer
\section{Hammack 12.6: 6, 7, 8, 12, 14}
\problem{6.} Given a function $f: A\to B$ and a subset $Y\subseteq B,$
is $f(f^{-1}(Y)) = Y$ always true? Prove or give a counterexample.
\answer
Let $f: \bb R\to\bb R$ be $f(x) = 1.$ $f(f^{-1}(\{2\})) = f(\emptyset) =
\emptyset \neq \{2\}.$
\endanswer
\problem{7.} Given a function $f: A\to B$ and subsets $W,X\subseteq A,$
prove $f(W\cap X)\subseteq f(W)\cap f(X).$
\answer
Let there be a function $f: A\to B$ and subsets $W, X\subseteq A.$
Let $b\in f(W\cap X).$ We will show that $b\in f(W)\cap f(X)$ to show
that $f(W\cap X)\subseteq f(W)\cap f(X).$
From the definition of image, there is $a\in W\cap X$ s.t. $b = f(a).$
Since $a\in W,$ $b \in f(W),$ and from $a\in X,$ $b\in f(X).$
Therefore, $b\in f(W)\cap f(X).$
\endanswer
\problem{8.} Given a function $f: A\to B$ and subsets $W,X\subseteq A,$
then $f(W\cap X) = f(W)\cap f(X)$ is false in general. Produce a
counterexample.
\answer
Let $W = \{1\}$ and $X = \{2\},$ and $f(x) = 0.$
We have $W\cap X = \emptyset,$ so $f(W\cap X) = \emptyset.$
However, $f(W) = f(W) = \{0\} = f(W)\cap f(X).$
This disproves $f(W\cap X) = f(W)\cap f(X)$ in general.
\endanswer
\problem{12.} Consider $f: A\to B.$ Prove that $f$ is injective if and
only if $X = f^{-1}(f(X))$ for all $X\subseteq A.$ Prove that $f$ is
surjective if and only if $f(f^{-1}(Y)) = Y$ for all $Y\subseteq B.$
\answer
Let $f: A\to B.$ We will show that $f$ is injective if and only if $X =
f^{-1}(f(X))$ for all $X\subseteq A.$
\smallskip
$(\Rightarrow)$
We will show this by contraposition.
Let there be $X\in A$ such that $f^{-1}(f(X)) \neq X.$
We will show that $f$ is not injective by showing that for some $x, y\in
A,$ where $x\neq y,$ $f(x) = f(y).$
For all $x\in X,$ we have $y = f(x) \in f(X)$ and $f(x) = y,$ so $x\in
f^{-1}(f(X)),$
Therefore, we know there is $z\not\in X$ such that $z\in f^{-1}(f(X)).$
Therefore, $f(z) \in f(X),$ and for some $w\in X,$ $f(z) = f(w),$ and
$w\neq z,$ so $f$ is not injective.
\smallskip
$(\Leftarrow)$
Assume that for all $X\subseteq A,$ $f^{-1}(f(X)) = X.$
We will show that $f$ is injective.
Let $x,y\in A$ such that $f(x) = f(y).$
We will show that $x = y.$
From $f(x) = f(y),$ we know $f(\{x\}) = f(\{y\}),$ so $f^{-1}(f(\{x\}))
= \{x\} = \{y\} = f^{-1}(f(\{y\})),$
so $x = y.$
\medskip
We will now show that $f$ is surjective if and only if $f(f^{-1}(Y)) =
Y$ for all $Y\subseteq B.$
\smallskip
$(\Rightarrow)$
Let $f$ be surjective.
Let $Y\subseteq B.$
We will show that $f(f^{-1}(Y)) = Y.$
Since $f$ is surjective, for all $y\in Y,$ there is $x\in A$ such that
$f(x) = y,$ so $f(f^{-1}(Y)) \supseteq Y.$
Also, for all $z\in f(f^{-1}(Y)),$ we know $z = f(x)$ where $f(x) = y$
for some $y\in Y.$
From these, $z = y \in Y,$ so $f(f^{-1}(Y)) \subseteq Y$ and therefore
$f(f^{-1}(Y)) = Y.$
\smallskip
$(\Leftarrow)$
Assume that for all $Y\subseteq B,$ $f(f^{-1}(Y)) = Y.$
We will show that $f$ is surjective.
To show that $f$ is surjective, we take $b\in B$ and show that we have
$a\in A$ such that $f(a) = b.$
$f(f^{-1}(\{b\})) = \{b\},$ and $f^{-1}(\{b\})$ is not empty because if
it were, $f(f^{-1}(\{b\})) = f(\emptyset) = \emptyset \neq \{b\}.$
Therefore, we pick $a\in f^{-1}(\{b\})$ and note that $f(a) = b,$ so $f$
is surjective.
\endanswer
\problem{14.} Let $f: A\to B$ be a function, and $Y\subseteq B.$ Prove
or disprove: $f^{-1}(f(f^{-1}(Y))) = f^{-1}(Y).$
\answer
Let $f: A\to B$ be a function, and $Y\subseteq B.$
We will show that $f^{-1}(f(f^{-1}(Y))) = f^{-1}(Y).$
$(\subseteq)$
Let $x\in f^{-1}(f(f^{-1}(Y))).$
We will show that $x\in f^{-1}(Y).$
From definition of preimage, $f(x) \in f(f^{-1}(Y)),$ and from
definition of image, $x\in f^{-1}(Y).$
$(\supseteq)$
Let $x\in f^{-1}(Y).$
We will show that $x\in f^{-1}(f(f^{-1}(Y))).$
From definition of preimage, for some $y\in Y,$ $f(x) = y,$ and
$y\in f(f^{-1}(Y)).$
And thus we have $x\in f^{-1}(f(f^{-1}(Y))).$
We have shown that $f^{-1}(f(f^{-1}(Y))) = f^{-1}(Y).$
\endanswer
\section{Hammack 13.1: 2, 6, 14}
\problem{2.} Show that sets $\bb R$ and $(\sqrt 2,\infty)$ have equal
cardinality by describing a bijection from one to the other.
\answer
Let $f: \bb R \to (\sqrt 2,\infty)$ be $f(x) = e^x+\sqrt 2.$ We will
show that $f$ is surjective, injective, and therefore bijective.
\smallskip
(Injective)
Let $x,y\in\bb R$ such that $f(x) = f(y).$ We will show that $x = y.$
$e^x+\sqrt 2 = e^y+\sqrt 2,$ so $e^x = e^y,$ and $x = y.$
We have shown that $f$ is injective.
\smallskip
(Surjective)
Let $y\in (\sqrt 2,\infty).$
We will show there exists $x\in\bb R$ such that $f(x) = y.$
We set $x$ to $\ln(y-\sqrt2),$ and obtain $f(x) =
e^{\ln(y-\sqrt2)}+\sqrt2 = y-\sqrt2+\sqrt2 = y.$
We have shown that $f$ is surjective.
We now know that $f$ is bijective.
\endanswer
\problem{6.} Show that sets $\bb N$ and $S = \{{\sqrt 2\over n}: n\in\bb
N\}$ have equal cardinality by describing a bijection from one to the
other.
\answer
Let $f: \bb N \to S$ be defined $f(n) = {\sqrt 2\over n}.$
\smallskip
(Injective)
Let $m,n\in\bb N$ such that $f(m) = f(n).$
We will show that $m = n.$
We obtain ${\sqrt2\over m} = {\sqrt 2\over n},$ and thus $m = n.$
We have shown that $f$ is injective.
\smallskip
(Surjective)
Let $s\in S.$
We will show that there exists $n\in\bb N$ so that $f(n) = s.$
By definition of $S,$ we know that there is $m\in\bb N$ such that $s =
{\sqrt 2\over m}.$
Letting $n = m,$ we have $f(n) = {\sqrt 2\over n} = s.$
We have shown that $f$ is surjective.
We now know that $f$ is bijective.
\endanswer
\problem{14.} Show that sets $\bb N\times\bb N$ and $S=\{(n,m)\in\bb
N\times\bb N : n\leq m\}$ have equal cardinality by describing a
bijection from one to the other.
\answer
Let us have $f:\bb N\times\bb N\to S$ defined as $f(n,m) = (n, n+m-1).$
We will show that $f$ is bijective by showing that $f$ is injective and
surjective.
This will show that $|\bb N\times\bb N| = |S|.$
\smallskip
(Injective)
Let $(n,m), (k,l)\in\bb N\times\bb N$ such that $f(n,m) = f(k,l).$
$(n, n+m-1) = (k, k+l-1) \to n = k, n+m-1 = k+l-1.$
Substituting $n = k$ into the latter constraint, $m = l.$
Thus, $(n,m) = (k,l),$ and $f$ is injective.
\smallskip
(Surjective)
Let $(n,m)\in S.$
$(n, m-n+1)\in \bb N\times \bb N$ because $n\in\bb N$ from definition of
$S$ and $n\leq m\to 1\leq m-n+1$ (and integer closure).
$$f(n, m-n+1) = (n, n+(m-n+1)-1) = (n,m),$$
so $f$ is surjective.
We now know that $f$ is bijective.
\endanswer
\bye
|