1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
\newcount\indentlevel
\newcount\itno
\def\reset{\itno=1}\reset
\def\afterstartlist{\advance\leftskip by .5in\par\advance\leftskip by -.5in}
\def\startlist{\par\advance\indentlevel by 1\advance\leftskip by .5in\reset
\aftergroup\afterstartlist}
\def\alph#1{\ifcase #1\or a\or b\or c\or d\or e\or f\or g\or h\or
i\or j\or k\or l\or m\or n\or o\or p\or q\or r\or
s\or t\or u\or v\or w\or x\or y\or z\fi}
\def\li#1\par{\medskip\penalty-100\item{\ifcase\indentlevel \number\itno.\or
\alph\itno)\else
(\number\itno)\fi
}%
#1\smallskip\advance\itno by 1\relax}
\def\hline{\noalign{\hrule}}
\let\impl\rightarrow
\newskip\tableskip
\tableskip=10pt plus 10pt
\def\\{\hfil\break}
\li Express each of these statements using predicates and quanifiers
{\startlist
\li ``Some pigs eat wheat.''
Let the domain be the set containing all animals. \\
Let $P(x):$ $x$ is a pig. \\
Let $W(x):$ $x$ eats wheat.
$$\exists x, P(x)\land W(x).$$
\li ``All board games are fun.''
Let the domain be the set of all board games. \\
Let $B(x):$ $x$ is a board game.
Let $F(x):$ $x$ is fun.
$$\forall x, B(x)\impl F(x).$$
\li ``Not all potatoes are sweet.''
Let the domain be the set of all plants. \\
Let $P(x):$ $x$ is a potato. \\
Let $S(x):$ $x$ is sweet.
$$\lnot\forall x, P(x)\impl S(x).$$
}
\li Determine the truth value of each of these statements if the domain
of each variable consists of all integers.
{\startlist
\li $\forall x\exists y (\root 5 \of x > y^2)$
False. $y^2 > 0$ for all $y,$ and $\root 5 \of {-1} = -1,$ disproving
this statement.
\li $\exists x\forall y((x = 2.5)\impl (y > x))$
False. $y = 0 < 2.5 = x.$
\li $\exists x\forall y(x^2 = y)$
False. $1 = x^2 = 0$ is not possible.
\li $\forall x\exists y(x^2 = y)$
True. The integers are closed under squaring.
}
\li Rewrite each of these statements so that no negation is to the left
of a quantifier, so that every negation is to the left of a predicate
(in other words, push the negation in past the quantifiers).
{\startlist
\li $\lnot\forall y(\forall x R(x,y)\land\exists x S(x,y))$
$$\exists y(\exists x \lnot R(x,y)\lor\forall x \lnot S(x,y))$$
\li $\forall x\lnot\exists y\forall z(A(x,y)\impl B(x,z))$
$$\forall x\forall y\exists z\lnot(A(x,y)\impl B(x,z))$$
\li $\lnot\exists x\lnot\forall y\lnot\forall z(A(x,z)\land B(y,z))$
$$\forall x\forall y\exists z\lnot (A(x,z)\land B(y,z))$$
\li $\lnot\exists x\forall y\exists z(P(x,y)\iff Q(z))$
$$\forall x\exists y\forall z\lnot (P(x,y)\iff Q(z))$$
}
\li Let $S(x)$ be the statement ``$x$ has a sabre tooth tiger,'' let
$D(x)$ be the statement ``x has a dhole,'' and let $H(x)$ be the
statement ``x has a horse.'' Express each of these statements in terms
of $S(x),$ $D(x),$ $H(x),$ quantifiers, and logical connectives. Let the
domain consist of all people.
{\startlist
\li Every person who owns a sabre tooth tiger also owns a dhole or a
horse.
$$\forall x S(x)\impl(D(x)\land H(x)).$$
\li No one owns a sabre tooth tiger, and at least one person owns a
horse.
$$\forall x\lnot S(x) \land \exists x H(x).$$
\li For each of the three animals---sabre tooth tigers, dholes, and
horses---there is a person who has this animal. Hint: All three
animals can, but do not have to be, owned by the same person.
$$\exists x S(x) \land \exists x D(x) \land \exists x H(x).$$
}
\li Express each of these statements using quantifiers. Then form the
negation of the statement so that no negation is to the left of a
quantifier (in other words, push the negation in past the quantifiers).
Next, express the negation in English.
{\startlist
\li Let the domain be all animals \\
Let $B(x):$ $x$ is a bird \\
Let $C(x):$ $x$ can chirp \\
``There exists a bird that can chirp.''
$$\exists x B(x)\land C(x).$$
\li Let the domain be all animals \\
Let $C(x):$ $x$ is a cat \\
Let $E(x):$ $x$ eats fish \\
``All cats eat fish.''
$$\forall x C(x)\impl E(x).$$
\li Let the domain be all animals
Let $D(x):$ $x$ is a dog \\
Let $M(x):$ $x$ can meow \\
``There exists a dog, only if not all animals can meow.''
$$(\lnot\forall x M(x)) \impl (\exists x D(x)).$$
}
\li Determine the truth value of the statement $\exists x\forall
y(x^3\leq y^4)$ if the domain for the variable consists of:
{\startlist
\li the positive real numbers
This is not true because $0 < y < \root 4 \of x^3$ always exists for
any $x$ (the fourth root of a cube of a positive number is positive,
so this number is never zero)
\li the non-negative integers
This is true with $x=0$ because $y^4 \geq 0$ over this domain.
\li the nonzero real numbers
This is true with $x=-1$ because $y^4 \geq 0 > x^3 = -1.$
}
\li Show that $\lnot\forall x(P(x)\land\lnot Q(x))$ is logically
equivalent to $\exists x(P(x)\impl Q(x)).$
\halign{\vrule\strut#\tabskip\tableskip&#\hfil&#\hfil&#\tabskip0pt&#\vrule\cr\hline
&$\lnot \forall x(P(x)\land\lnot Q(x))$&Given&&\cr
&$\exists x \lnot(P(x)\land\lnot Q(x))$&DeMorgan's Law for Quantifiers&&\cr
&$\exists x (\lnot P(x)\lor\lnot\lnot Q(x))$&DeMorgan's Law&&\cr
&$\exists x (\lnot P(x)\lor Q(x))$&Double negation law&&\cr
&$\exists x (P(x)\impl Q(x))$&Conditional Identity&&\cr
\hline
}
\li Find a counterexample, if possible, to these universally quantified
statements, where the domain for all variables consists of all real
numbers. Otherwise, state that no counterexample exists.
{\startlist
\li $\forall x\forall y(x^3\neq y^7)$
With $x=y=1,$ $x^3 = y^7.$
\li $\forall x\exists y(y = {x\over 2})$
No counterexample exists.
\li $\forall x\forall y((x\geq y)\impl(x^{100} > y)).$
With $x=y=0,$ $x\geq y,$ but $x^{100} \not> y.$
}
\bye
|