aboutsummaryrefslogtreecommitdiff
path: root/li/hw1.tex
blob: 1676065367d37da7c96469480c3f5afa52716b3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{\bf\noindent 10.}

$(0, y_1)$, $(1, y_2)$, and $(2, y_3)$ lie on the same line if $(2, y_3)
= k(1, y_2 - y_1) + (0, y_1) = (k, ky_2 - (k-1)y_1) \to y_3 = 2y_2 - y_1.$

{\bf\noindent 11.}

For $a = 2$ and $a = -2,$ the columns are linearly dependent, and there
is a line of solutions.

{\bf\noindent 15.}

"Lines." "2." "the column vectors."

{\bf\noindent 22.}

If $(a,b)$ is a multiple of $(c,d),$ $c/a = d/b \to c/d = a/b,$ so $(a,
c)$ is a multiple of $(b, d)$.

{\bf\noindent 5.}

$0$ gives no solutions. $20$ gives infinitely many solutions. These
solutions include $(4, -2)$ and $(0, 5).$

{\bf\noindent 8.}

$k=3,$ $k=0,$ and $k=-3$ cause elimination to break down. $k=3$ makes
the system inconsistent, so it has 0 solutions, $k=-3$ causes
infinite solutions, and $k=0$ is consistent with 1 solution but requires
a row exchange.

{\bf\noindent 12.}

If $d=10,$ a row exchange is required, giving a triangular system
$$\pmatrix{2&5&1\cr 0&1&-1\cr 0&0&-1}\pmatrix{x\cr y\cr z} =
\pmatrix{0\cr 3\cr 2}$$

{\bf\noindent 19.}

"Combination." $2x - y = 0$ cannot be solved.

{\bf\noindent 28.}

{\it (a)}

False. If the second row doesn't start with a zero coefficient, then a
multiple of row 1 will be (indirectly) subtracted from row 3 when row 2
is subtracted from row 3.

{\it (b)}

False. After eliminating the $u$ column from the third row, a $v$
``residue'' might remain.

{\it (c)}

True. The third row is already fully ``solved'' for back-substitution.

{\bf\noindent 22.}

{\it (a)}

$$\pmatrix{1&0&0\cr -5&1&0\cr 0&0&1\cr}$$

{\it (b)}

$$\pmatrix{1&0&0\cr 0&1&0\cr 0&-7&1\cr}$$

{\it (c)}

$$\pmatrix{0&1&0\cr 0&0&1\cr 1&0&0\cr}$$

{\bf\noindent 27.}

$R_{31}$ should add 7 times row 1 to row 3. $E_31R_31 = I_3.$

{\bf\noindent 29.}

{\it (a)}

$$E_{13} = \pmatrix{1&0&1\cr 0&1&0\cr 0&0&1}$$

{\it (b)}

$$\pmatrix{1&0&1\cr 0&1&0\cr 1&0&1}$$

{\it (c)}

$$\pmatrix{2&0&1\cr 0&1&0\cr 1&0&1}$$

{\bf\noindent 42.}

{\it (a)}

True.

{\it (b)}

False, they just have to be $m\times n$ and $n\times m.$

{\it (c)}

True, but they don't have the same dimensions.

{\it (d)}

False. This is only true if $B$ is invertible.

{\bf\noindent 51.}

$AX = I_3.$

{\bf\noindent 6.}

$$E^2 = \pmatrix{1&0\cr12&1}$$
$$E^8 = \pmatrix{1&0\cr48&1}$$
$$E^{-1} = \pmatrix{1&0\cr-6&1}$$

{\bf\noindent 9.}

{\it (a)}

If none of $d_1,$ $d_2,$ or $d_3$ are zero, the product is nonsingular.
% Prove it

{\it (b)}

Solving this first system, $c = b,$ by substitution.

Then we have $$Dd = c \to d = \pmatrix{0\cr0\cr 1/d_3}$$
and $$Vx = d \to \pmatrix{1 & -1 & 0\cr 0 & 1 & -1 \cr 0 & 0 &
1}\pmatrix{x_1\cr x_2\cr x_3} = d \to x_3 = x_2 = x_1 = 1/d_3.$$

{\bf\noindent 19.}

In the second matrix, $c=0$ requires a row exchange, and $c=3$ would
make the matrix singular.

In the first matrix, it is singular if $3b = 40-10a.$
And it requires a row exchange if $a=4$ and $b\neq 0.$

{\bf\noindent 31.}

$$\pmatrix{1&1&0\cr 1&2&1\cr 0&1&2} = \pmatrix{1&0&0\cr 1&1&0\cr 0&1&1}
\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} =
\pmatrix{1&0&0\cr 1&1&0\cr 0&1&1}\pmatrix{1&0&0\cr0&1&0\cr0&0&1}\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1}
$$

$$\pmatrix{a&a&0\cr a&a+b&b\cr 0&b&b+c} =
\pmatrix{1&0&0\cr1&1&0\cr0&1&1}\pmatrix{a&a&0\cr 0&b&b\cr 0&0&c} =
\pmatrix{1&0&0\cr1&1&0\cr0&1&1}\pmatrix{a&0&0\cr0&b&0\cr0&0&c}\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1}
$$

{\bf\noindent 32.}

$$Lc = b \to \pmatrix{1&0\cr4&1}c = \pmatrix{2\cr 11} \to c =
\pmatrix{2\cr 3}.$$
$$Ux = c \to \pmatrix{2&4\cr0&1}x = \pmatrix{2\cr 3} \to x =
\pmatrix{-5\cr 3}.$$

$$A = LU = \pmatrix{1&0\cr4&1}\pmatrix{2&4\cr0&1} =
\pmatrix{2&4\cr8&17}.$$
$$\pmatrix{2&4\cr8&17}x = \pmatrix{2\cr 11} \to \pmatrix{2&4\cr0&1}x =
\underline{\pmatrix{2\cr3}} \to x = \pmatrix{-5\cr 3}$$

\bye