1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
\def\bmatrix#1{\left[\matrix{#1}\right]}
\def\dmatrix#1{\left|\matrix{#1}\right|}
\def\fr#1#2{{#1\over #2}}
{\bf Section 6.1}
\noindent{\bf 5.}
$$A = \bmatrix{1&b\cr b&9}.$$
{\it (a)}
$a_{11} = 1 > 0,$
and $\det A = 9 - b^2 > 0$ when $-3 < b < 3.$
{\it (b)}
$$A = \bmatrix{1&0\cr b&1}\bmatrix{1&b\cr 0&9-b^2}
= \bmatrix{1&0\cr b&1}\bmatrix{1&0\cr 0&9-b^2}\bmatrix{1&b\cr 0&1}
$$
{\it (c)}
$(x-v)^TA(x-v) + c = x^TAx - 2x^TAv + v^TAv + c$ lets us generate
arbitrary first and zeroth order terms while retaining the same
second-order terms ($v^TAx = x^TAv$ by symmetry) since $x^TAx$ are the
only second order terms.
$$\fr12(x^2+2bxy+9y^2)-y = \fr12(x^TAx - 2x^TAv + v^TAv + c) \Rightarrow
y = x^TAv - v^TAv - c \Rightarrow
y = x^TAv, c = -v^TAv.$$
$$y = x^TAv \Rightarrow \bmatrix{0\cr1} = Av \Rightarrow
v = \bmatrix{-b/(9-b^2)\cr 1/(9-b^2)},$$
by row reduction.
The minimum is
$$\fr12c = -\fr12v^TAv = -\fr12v^T\bmatrix{0\cr1} = \fr1{2(b^2-9)},$$
when $A$ is positive definite ($|b| < 3$).
{\it (d)}
There is no minimum if $b=3$ because $x^2+2bxy+9y^2 = x^2+6xy+9y^2 =
(x+3y)^2$ is zero where $y = -x/3,$ giving nonzero values of $y$ with a
zero quadratic component and therefore arbitrarily small values of
$\fr12(x^2+2bxy+9y^2) - y.$
{\bf Section 6.2}
\noindent{\bf 4.}
Since $A$ is positive definite, $A$ has eigenvalue $\lambda > 0$ and
eigenvector $v,$ $A^2v = \lambda^2v,$ giving that $A^2$ has eigenvalue
$\lambda^2 > 0$ and no others (because the complete set of eigenvectors,
from symmetry of $A^2,$ span $R^n.$)
Similarly, $A^{-1}$ is symmetric ($(A^{-1}A)^T = I \to (A^{-1})^TA = I
\to (A^{-1})^T = A^{-1}$), so its eigenvectors will span the codomain,
and $Av = \lambda v \to A^{-1}Av = A^{-1}\lambda v \to (1/\lambda)v =
A^{-1}v,$ and $\lambda > 0 \to 1/\lambda > 0,$ so it is also
positive-definite.
\noindent{\bf 24.}
Letting $s=0$ gives us a set of eigenvalues with minimum
$\lambda_{\rm min},$ and the set of eigenvalues for arbitrary $s$ has
minimum $\lambda_{\rm min}+s > 0 \to s > -\lambda_{\rm min}.$
$$
\bmatrix{0&-4&-4\cr -4&0&-4\cr -4&-4&0} \to \lambda = 4,-8 \to s > 8.$$
$$
\bmatrix{0&3&0\cr 3&0&4\cr 0&4&0} \to \lambda = -4,0,4 \to s > 4.$$
\noindent{\bf 27.}
$$A = CC^T = \bmatrix{3&0\cr1&2}\bmatrix{3&1\cr0&2} = \bmatrix{10&3\cr
3&5}.$$
$$A = \bmatrix{4&8\cr8&25} = \bmatrix{2&0\cr 4&3}\bmatrix{2&4\cr 0&3}.$$
(This was found by inspection after a first-order approximation, with
$U = \bmatrix{4&8\cr0&9},$ (in the LU decomposition) giving $\sqrt D =
\bmatrix{2&0\cr0&3}$)
\noindent{\bf 31.}
For $A,$ it has eigenvalue $3$ corresponding to $(1,-1,0)^T$ and
$(1,1,-2)^T.$
$$x^TAx = 3/2(x-y)^2+1/2(x+y-2z)^2.$$
$$x^TBx = x^T\bmatrix{x+y+z\cr x+y+z\cr x+y+z} = (x+y+z)^2.$$
\goodbreak
{\bf Section 6.3}
\noindent{\bf 12.}
{\it (a)}
If $A' = 4A,$ $\Sigma' = 4\Sigma,$ because $(A')^TA' = 4A^T\cdot4A =
16A^TA,$ meaning the diagonal of $\Sigma'$ will have values $4$ times
$\Sigma.$
{\it (b)}
The SVD of $A^T$ is $V\Sigma U^T,$ by $(AB)^T = B^TA^T,$ and that
$\Sigma$ is symmetric (and $V$ and $U$ still satisfy orthogonality
because orthogonality is preserved for square matrices across a
transpose).
The SVD of $A^{-1} = A^+$ is $V\Sigma^{-1} U^T,$ because the
pseudoinverse is the complete inverse for an invertible matrix.
\noindent{\bf 15.}
$$A = \bmatrix{1&1&1&1} = \bmatrix{1}\bmatrix{2&0&0&0}
\bmatrix{1/2&1/2&1/2&1/2\cr
-1/\sqrt2&1/\sqrt2&0&0\cr
-1/\sqrt2&0&1/\sqrt2&0\cr
-1/\sqrt2&0&0&1/\sqrt2\cr}$$
$$A^+ = \bmatrix{1/2&-1/\sqrt2&-1/\sqrt2&-1/\sqrt2\cr
1/2&1/\sqrt2&0&0\cr
1/2&0&1/\sqrt2&0\cr
1/2&0&0&1/\sqrt2\cr}\bmatrix{1/2\cr 0\cr 0\cr 0}
\bmatrix{1}
= \bmatrix{1/4\cr1/4\cr1/4\cr1/4}.
$$
$$B = \bmatrix{0&1&0\cr 1&0&0} = \bmatrix{1&0\cr0&1}\bmatrix{1&0&0\cr0&1&0}
\bmatrix{0&1&0\cr1&0&0\cr0&0&1}
$$
$$B^+ = \bmatrix{0&1&0\cr 1&0&0\cr 0&0&1}\bmatrix{1&0\cr0&1\cr0&0}
\bmatrix{1&0\cr0&1}
= \bmatrix{0&1\cr1&0\cr0&0}$$
$$C = \bmatrix{1&1\cr 0&0} =
\bmatrix{1&0\cr0&1}\bmatrix{\sqrt2&0\cr0&0}\bmatrix{1/\sqrt2&1/\sqrt2\cr1/\sqrt2&-1/\sqrt2}$$
$$C^+ =
\bmatrix{1/\sqrt2&1/\sqrt2\cr1/\sqrt2&-1/\sqrt2}\bmatrix{1/\sqrt2&0\cr0&0}
\bmatrix{1&0\cr0&1} =
\bmatrix{1/2&1/2\cr0&0}$$
\noindent{\bf 18.}
With $r_i$ as the $i$th row of $A,$ $A,$ $\hat x = c_1r_1 + c_3r_3.$
$$A^TA\hat x = A^Tb =
A^T\bmatrix{1&0&0\cr1&0&0\cr1&1&1}(c_1\bmatrix{1\cr0\cr0} +
c_3\bmatrix{1\cr1\cr1}) =
\bmatrix{1&1&1\cr0&0&1\cr0&0&1}(c_1\bmatrix{1\cr1\cr1} +
c_3\bmatrix{1\cr1\cr3}) = $$$$
c_1\bmatrix{3\cr1\cr1} + c_3\bmatrix{5\cr3\cr3}
= \bmatrix{1&1&1\cr0&0&1\cr0&0&1}\bmatrix{0\cr2\cr2} =
\bmatrix{4\cr2\cr2} = (1/2)\bmatrix{3\cr1\cr1} +
(1/2)\bmatrix{5\cr3\cr3} \to \hat x = \bmatrix{1\cr1/2\cr1/2}
$$
\bye
|