aboutsummaryrefslogtreecommitdiff
path: root/li/hw4.tex
blob: 558f9cbab9358a15809a77b2e72e4c450f542de5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
\def\bmatrix#1{\left[\matrix{#1}\right]}

    {\noindent\bf Section 2.4}

{\noindent\bf 6.}

{\it (a)}

It has a two-sided inverse if $r = m = n.$

{\it (b)}

It has infinitely many solutions if $r = m < n.$

{\noindent\bf 12.}

{\it (a)}

Matrix $A$ is of rank 1 and equal to
$$\bmatrix{1\cr 0\cr 2}\bmatrix{1&0&0&3}$$

{\it (b)}

Matrix $A$ is of rank 1 and equal to
$$\bmatrix{2\cr 6}\bmatrix{1&-1}$$

{\noindent\bf 18.}

The row space has basis:
$$\{\bmatrix{0\cr1\cr2\cr3\cr4}, \bmatrix{0\cr0\cr0\cr1\cr2}\},$$
the null space has basis:
$$\{\bmatrix{1\cr0\cr0\cr0\cr0}, \bmatrix{0\cr-2\cr1\cr0\cr0},
\bmatrix{0\cr0\cr0\cr-2\cr0}\},$$
the column space has basis:
$$\{\bmatrix{1\cr1\cr0},\bmatrix{3\cr4\cr1}\},$$
and the left null space has basis:
$$\{\bmatrix{1\cr-1\cr1}\}.$$

{\noindent\bf 32.}

$A$ has column space of the xy-plane, and left null space of the z-axis.
It also has row space of the yz-plane, and null space of the x-axis.

$I+A$ has full rank, so its column space and row space are ${\bf R}^3,$
and its null space and left null space are the zero vector.

\iffalse % practice problems

{\noindent\bf 2.}

{\noindent\bf 3.}

{\noindent\bf 8.}

{\noindent\bf 9.}

{\noindent\bf 10.}

{\noindent\bf 16.}

{\noindent\bf 17.}

{\noindent\bf 21.}

{\noindent\bf 25.}

{\noindent\bf 27.}

{\noindent\bf 35.}

{\noindent\bf 37.}

\fi

    {\noindent\bf Section 2.6}

{\noindent\bf 16.}

$$\bmatrix{0&1&0&0\cr 0&0&1&0\cr 0&0&0&1\cr 1&0&0&0}$$
If $A$ maps $(x_1, x_2, x_3, x_4)$ to $(x_2, x_3, x_4, x_1),$ $A^2$ maps
$x$ to $(x_3, x_4, x_1, x_2),$ and $A^3$ takes $x$ to $(x_4, x_1, x_2,
x_3),$ and $AA^3 = I = A^4,$ so $A^3 = A^{-1}$ by definition of the
identity.

{\noindent\bf 28.}

{\it (a)}

Range is $V^2,$ and kernel is $0.$

{\it (b)}

Range is $V^2,$ and kernel has basis $(0, 0, 1).$

{\it (c)}

Range is $0,$ and kernel is $V^2$

{\it (d)}

Range is the subspace with basis $(1, 1)$ and kernel has basis $(0, 1).$

{\noindent\bf 36.}

{\it (a)}

$$\bmatrix{2&5\cr 1&3}$$

{\it (b)}

$$\bmatrix{3&-5\cr -1&2}$$

{\it (c)}

Because, by linearity, if $(2, 6) \mapsto (1, 0),$ $.5(2,6) = (1, 3)
\mapsto (.5, 0).$

{\noindent\bf 44.}

This is equivalent to a 180$^\circ$ rotation.

\iffalse % practice problems

{\noindent\bf 6.}

{\noindent\bf 7.}

{\noindent\bf 8.}

{\noindent\bf 9.}

{\noindent\bf 17.}

{\noindent\bf 40.}

{\noindent\bf 45.}

\fi

\bye