1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
\newfam\rsfs
\newfam\bbold
\def\scr#1{{\fam\rsfs #1}}
\def\bb#1{{\fam\bbold #1}}
\let\oldcal\cal
\def\cal#1{{\oldcal #1}}
\font\rsfsten=rsfs10
\font\rsfssev=rsfs7
\font\rsfsfiv=rsfs5
\textfont\rsfs=\rsfsten
\scriptfont\rsfs=\rsfssev
\scriptscriptfont\rsfs=\rsfsfiv
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\def\E{\bb E}
\def\P{\bb P}
\newcount\qnum
\def\fr#1#2{{#1\over #2}}
\def\var{\mathop{\rm var}\nolimits}
\def\cov{\mathop{\rm cov}\nolimits}
\def\dd#1#2{\fr{\partial #1}{\partial #2}}
\def\bmatrix#1{\left[\matrix{#1}\right]}
\def\problem#1{\vskip0pt plus 2in\goodbreak
\vskip0pt plus -2in\medskip\noindent{\bf #1)}\smallskip\penalty500}
\def\part#1{\goodbreak\smallskip\noindent{\bf (#1)}\penalty500\par}
\problem{1}
\part{a}
\let\truebeta\beta
\def\beta{\hat\truebeta}
$${\cal L}(\beta;X_1,\ldots,X_n) = \prod_{i=1}^{n} {1\over
\Gamma(\alpha)\beta^\alpha}X_i^{\alpha-1}e^{-X_i/\beta}$$
$$\ell(\beta) = \ln{\cal L}(\beta) = -n\ln(\Gamma(\alpha)) - \alpha n\ln\beta +
\sum_{i=1}^n [(\alpha-1)\ln(X_i) - X_i/\beta].$$
$${d\ell(\beta)\over d\beta} = -{\alpha n\over\beta} + \sum_{i=1}^n
{X_i\over\beta^2} = 0 \to \sum_{i=1}^n X_i = \beta \alpha n \to \beta
= \overline X/\alpha = \overline X/4,$$
where $\overline X = \fr1n \sum_{i=1}^n X_i.$
\part{b}
\let\beta\truebeta
$$\E(\overline X) = \fr1n\sum_{i=1}^n \E X = \E X,$$
so $\E\hat\beta = \E X / \alpha.$
$$\E X = \int_0^\infty {x^\alpha e^{-x/\beta}\over\Gamma(\alpha)\beta^\alpha} dx
= \alpha\beta\int_0^\infty {x^\alpha e^{-x/\beta}\over
\Gamma(\alpha+1)\beta^{\alpha+1}} dx
= \alpha\beta,$$
because the integrand is the gamma distribution for $\alpha' =
\alpha+1.$ Therefore, the estimator is unbiased because
$\E\hat\beta = \alpha\beta/\alpha = \beta.$
\part{c}
By the central limit theorem, as $n\to\infty,$ $\hat\beta \sim
{\cal N}(\E (\hat\beta), \var(\hat\beta)/n) = {\cal N}(\beta,
\var(\hat\beta)/n),$ so if
$\var \hat\beta<\infty,$ the estimator is consistent.
The mgf of $X_k$ is $(1-\beta t)^\alpha,$ so the mgf of
$Y = \sum_{i=1}^n X_i$ is $(1-\beta t)^{n\alpha}.$
$$Y \sim \Gamma(\alpha n, \beta) \to \overline X \sim \Gamma(\alpha n,
\beta/n) \to \hat\beta \sim \Gamma(\alpha n, \beta/n\alpha),$$
by change of variable in the gamma distribution.%
\footnote{*}{$X\sim \Gamma(\alpha, \beta)$ has pdf
${1\over\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-x\over\beta},$ so
$kX$ has pdf
${1\over\Gamma(\alpha)\beta^\alpha}(kx)^{\alpha-1}e^{-kx\over\beta},$
giving $kX \sim \Gamma(\alpha, k\beta).$}
The gamma function has variance $\alpha\beta^2,$ so the variance of
$\hat\beta$ is $\beta^2/n\alpha,$ which is less than infinity, so the
estimator is consistent (and it will tend to zero).
% to prove, and to find variance. actually, we don't need to find
% variance for this problem, but we do for (d). find the lecture!!
\part{d}
Since we've already proven $\E(\hat\beta) = \beta$ and obtained a value
for $\var\hat\beta,$ we get the following result by the Central Limit
Theorem,
$\sqrt n(\hat\beta - \beta) \to {\cal N}(0, \var(\hat\beta)) =
{\cal N}(0, \beta^2/n\alpha)$
\problem{2}
\part{a}
With $\theta = 0,$ by Student's Theorem,
$${\overline X\over S/\sqrt{n}} \sim t(n-1).$$
Taking $t_{1-\alpha}(n-1)$ to be the $1-\alpha$ quantile of the
t-distribution with $n-1$ degrees of freedom, we have a test ${\overline
X\over S/\sqrt{n}} \geq t_{1-\alpha}(n-1).$
Substituting in our given values ($\overline X = .8,$ $n = 25,$ $S^2 =
2.56$),
$${.8\over 1.6/\sqrt{25}} \geq 1.711 \to 2.5 \geq 1.711,$$
so our data does pass the test.
\part{b}
\def\cdf{{\bf T}}
Letting $\cdf$ be the cdf of a t-distribution with $n-1$ degrees of
freedom, we use the following result of student's theorem
$${\overline X - \theta\over S/\sqrt n} \sim t(n-1)$$
to get the probability this static is in the critical set as
$$\gamma_C(\theta) = \P({\overline X\over S/\sqrt n} > 1.711) =
\P({\overline X-\theta\over S/\sqrt n} > 1.711-{\theta\over S/\sqrt n})
$$$$
= 1-\cdf(1.711-{\theta\over S/\sqrt n}) =
1-\cdf(1.711-{\theta\over .32})
= \cdf({25\theta\over8} - 1.711).
$$
\problem{3}
\part{a}
The cdf of $X_i$ on the support of its pdf $[0,1],$ is $x,$ (zero on
$x<0$ and one on $x>1$)
With $X_{(1)} = \min(X_1,\ldots,X_6)$ and $X_{(6)} =
\max(X_1,\ldots,X_6),$
$$\P(X_{(1)} \geq x) = \P(X_1 \geq x)\P(X_2 \geq x)\cdots\P(X_6 \geq x)
= (1-x)^6 \to \P(X_{(1)} \leq x) = 1-(1-x)^6.$$
$$\P(X_{(6)} \leq x) = \P(X_1 \leq x)\P(X_2 \leq x)\cdots\P(X_6 \leq x)
= x^6.$$
These give pdfs for $X_{(1)}$ and $X_{(6)},$ respectively, $6(1-x)^5$
and $6x^5.$
\part{b}
$$\E(X_{(1)} + X_{(6)}) = \int_0^1 x(6(1-x)^5 + 6x^5) dx =$$$$
\left[ x(-(1-x)^6 + x^6) \right]_0^1 - \int_0^1 -(1-x)^6 + x^6 dx =
1 - \fr17\left[-(1-x)^7 + x^7\right]_0^1 = 1.
$$
This makes sense by symmetry. The maximum value of the set has the same
pdf as the minimum value reflected about .5, so we expect $\E X_{(6)} =
1 - \E X_{(1)}.$
\problem{4}
\part{a}
$$Y := 2X_2 - X_1 = \pmatrix{-1&2&0}{\bf X} = t^T{\bf X}.$$
$$\E Y = t^T\E{\bf X} = -1(-1) + 2(2) = 5.$$
$$\var Y = \E(t^TXX^Tt) - \E(t^TX)\E(X^Tt) = t^T(\var X)t =
\bmatrix{-1&2&0}\bmatrix{4&-1&0\cr-1&1&0\cr0&0&2}\bmatrix{-1\cr2\cr0} =
12.
$$
\def\cdf{{\bf\Phi}}
Where $\cdf$ is the cdf of the standard normal distribution, we
normalize $2X_2-X_1,$ to reach the standard normal and get
$$\P(2X_2 > X_1 + 3) = \P(2X_2 - X_1 - 5 > -2) = \P((2X_2 - X_1 -
5)/\sqrt{12} > -2/\sqrt{12}) = 1-\cdf(-1/\sqrt{3}) \approx .793.$$
\part{b}
If $X,Y \sim {\cal N}(0,1)$ and $X\perp Y,$ $X^2 + Y^2 \sim \chi^2(2)$
by the definition of $\chi^2.$
For our problem, $Y^TY \sim \chi^2(2)$ if $Y$ is a multivariate normal
with
$$\E Y = \pmatrix{0\cr0} \qquad \var Y = \pmatrix{1&0\cr0&1}.$$
$$\var (X_1,X_3)^T = \pmatrix{4&0\cr0&2} \to Y =
\pmatrix{1/2&0\cr0&1/\sqrt2}(X_1,X_3)^T + \mu,$$
$A$ given by $(\var (X_1,X_3)^T)^{-1/2},$ from $A = \Sigma^{-1/2}$
(3.5.12) in the textbook.
$$\E Y = \bmatrix{-1/2\cr\sqrt2} + \mu = 0 \to \mu =
\bmatrix{1/2\cr -\sqrt2}\qquad A = \bmatrix{1/2&0\cr0&1/\sqrt2}$$
\bye
|