aboutsummaryrefslogtreecommitdiff
path: root/zhilova/hw1.tex
blob: d9f5d224f7cd766d17c50cf3b6c869433fe8b68a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
\newfam\rsfs
\newfam\bbold
\def\scr#1{{\fam\rsfs #1}}
\def\bb#1{{\fam\bbold #1}}
\let\oldcal\cal
\def\cal#1{{\oldcal #1}}
\font\rsfsten=rsfs10
\font\rsfssev=rsfs7
\font\rsfsfiv=rsfs5
\textfont\rsfs=\rsfsten
\scriptfont\rsfs=\rsfssev
\scriptscriptfont\rsfs=\rsfsfiv
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv

\def\Pr{\bb P}
\def\E{\bb E}
\newcount\qnum
\def\q{\afterassignment\qq\qnum=}
\def\qq{\qqq{\number\qnum}}
\def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip}
\def\fr#1#2{{#1\over #2}}
\def\var{\mathop{\rm var}\nolimits}

\q1

Let $A \setminus B := \{x \in A : x\not\in B\}.$
$(A\setminus B) \cap B = \empty,$ by definition, so they are disjoint
sets. Therefore, if $x \in A \land x \in B,$ $x\not\in A \setminus B$
and $x\not\in B\setminus A,$ and also the two setminuses do not
intersect with eachother, making them disjoint sets.
$$\Pr(A\cup B) = \Pr((A\setminus B)\cup(A\cap B)\cup(B\setminus A)) =
\Pr(A\setminus B) + \Pr(A\cap B) + \Pr(B\setminus A) + \Pr(A\cap B) -
\Pr(A\cap B)$$$$ = \Pr((A\setminus B)\cup(A\cap B)) + \Pr((B\setminus
A)\cup(A\cap B)) - \Pr(A\cap B) = \Pr(A) + \Pr(B) - \Pr(A\cap B).$$

\q2

$$\Pr(A\cap B) + \Pr(A\cap B^C) = \Pr(A\cap B) + \Pr(\{x\in A:x\not\in
B\}) = \Pr((A\cap B) \cup (A\setminus B)) = \Pr(A),$$
by disjointedness and set arithmetic.

\q3

$$\Pr(A_1 \cup (A_2^C \cap A_3^C)) = \Pr(A_1) + \Pr(A_2^C \cap A_3^C) -
\Pr(A_1\cap A_2^C\cap A_3^C) = 1/6 + \Pr(A_2^C)\Pr(A_3^C) -
\Pr(A_1)\Pr(A_2^C)\Pr(A_3^C)$$$$ = 1/6 + 25/36 - 25/216 = 161/216.$$

\q4

\noindent{\it (a)}

Pairwise exclusive implies mutually exclusive:
$$A_1\cap A_2\cap A_3 = A_1\cap (A_2\cap A_3) = A_1\cap\empty =
\empty,$$
and see {\it (b)} for a description of why these probabilities are
therefore impossible.

\noindent{\it (b)}

No, if they were, all three sets would be disjoint, giving
$$\Pr(A_1\cup A_2\cup A_3) = \Pr(A_1) + \Pr(A_2) + \Pr(A_3) = 1/2 + 1/4 +
1/3 > 1,$$
violating a property of the probability function ($0 \leq \Pr X \leq 1$)

\q5

\noindent{\it (a)}
$$\E(Y) = \E(2 - 3X) = \E(2) - 3\E(X) = 2 - 3*2 = -4.$$

\noindent{\it (b)}
$$\var Y = \E(Y^2) - \E(Y)^2 = \E((2-3X)^2) - 16 = \E(4 - 12X + 9X^2) -
16 = 4 - 12\E(X) + 9\E(X^2) - 16 = 18,$$
by linearity of expectation.

\q6

$$P_X(k) = \left\{\vbox{\halign{$#$\hfil&\hskip3em $#$\hfil\cr{\lambda^k
e^{-\lambda}\over k!}&k \geq 0\cr 0&{\rm otherwise}\cr}}\right..$$

\noindent{\it (a)}

$$\E(e^{tX}) = \sum_{x=0}^\infty e^{tx}P_X(x)
= \sum_{x=0}^\infty {e^{tx}\lambda^xe^{-\lambda}\over x!}
= e^{-\lambda}\sum_{x=0}^\infty {e^{(t+\ln \lambda)x}\over x!}
= e^{-\lambda}\sum_{x=0}^\infty {(\lambda e^t)^x\over x!}
= e^{-\lambda}e^{\lambda e^t},
$$
by definition of the $e^ax$ Taylor series.

\noindent{\it (b)}

The third-order moment $\E(X^3)$ will be the third derivative of the mgf
$\E(e^{tX}).$ at $t=0,$ so we get
$$e^{-\lambda}(\lambda e^t)^3 e^{\lambda e^t} = \lambda^3.$$

\q7

\noindent{\it (a)}

The pmf is $1/16$ for $X = 0$ and $X=4,$ $4/16$ for $X=1$ and $X=3,$ and
$6/16$ for $X=2,$ or in other terms, $P_X(k) = {{4\choose k}\over 2^4}.$

\noindent{\it (b)}

This can be immediately computed as $$\Pr(\hbox{$X$ is odd}) = \Pr(X = 1)
+ \Pr(X = 3) = 1/2,$$ by disjointedness of those events.

\q8

Chebyshev's inequality gives us
$$\Pr(|X-\E X| < .1) \geq 1-{\sigma^2\over .1^2} \geq .95$$
The maximum value of $\sigma = \var X$ is $.05*.1^2 = \sigma^2 \to
\sigma = .1\sqrt{.05} \approx .022.$

\q9

{\it (a)}

On $\{x \geq 0\} = \{y \geq 1\},$
$$F_X(x) = 1 - e^{-\lambda x}.$$
$$F_Y(y) = F_X(e^y) = 1 - e^{-\lambda e^y}.$$
$$f_Y(y) = \lambda e^y e^{-\lambda e^y} = \lambda e^{y-\lambda e^y}.$$

{\it (b)}

$\lambda < 1$ gives convergence.

\bye