aboutsummaryrefslogtreecommitdiff
path: root/lacey/hw4i.tex
blob: 767c62bd696bb63caca2970e7202b2bb42d68fe8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
\font\bigbf=cmbx12 at 24pt
\newfam\bbold
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\def\bb#1{{\fam\bbold #1}}
\input color

\newcount\pno
\def\tf{\advance\pno by 1\smallskip\bgroup\item{(\number\pno)}}
\def\endtf{\egroup\medskip}
\def\false{\centerline{TRUE\qquad{\color{blue} FALSE}}}
\def\true{\centerline{{\color{blue} TRUE}\qquad FALSE}}

\newcount\qno
\long\def\question#1{\ifnum\qno=0\else\vfil\eject\fi\bigskip\pno=0\advance\qno by 1\noindent{\bf Question \number\qno.} {\it #1}}

\def\intro#1{\medskip\noindent{\it #1.}\quad}
\def\proof{\intro{Proof}}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}

\let\bu\bullet

{\bigbf\centerline{Holden Rohrer}\bigskip\centerline{MATH 4317\qquad
HOMEWORK \#4, Part I}}

\question{Answer True or False. No justification is needed.}

\tf
If $\lim a_n = 0$ and $\{b_n\}$ is a bounded sequence, then $a_nb_n$ is
a convergent sequence.
\endtf

\true

\tf
If $\limsup_n a_n = 1$ and $\rho>1,$ then there is an $N>1$ such that
$a_n<\rho$ for all $n>N.$
\endtf

\true

\tf
If $(a_n)$ is a Cauchy sequence, then $|a_n|$ is a Cauchy sequence.
\endtf

\true

\tf
If $(a_n)$ is a Cauchy sequence, then $\lfloor a_n\rfloor$ is a Cauchy
sequence.
\endtf

\false

\tf
If $(a_n)$ is a Cauchy sequence, then $\arctan(a_n)$ is a Cauchy
sequence.
\endtf

\true

\question{(Exercise 2.6.5) Consider the following (invented) definition:
a sequence $(s_n)$ is pseudo-Cauchy if, for all $\epsilon>0,$ there
exists an $N$ such that if $n>N,$ then $|s_n-s_{n+1}|<\epsilon.$ Supply
a proof for the valid statements and a counterexample for the false
statements.}

\item{a.} Pseudo-Cauchy sequences are bounded.

\intro{Disproof}
False. $s_n = \log n$ is clearly unbounded, but for all $\epsilon > 0,$
we can choose some $N > 1/\epsilon.$

For all $n > N > 1/\epsilon,$ (or $\epsilon > 1/n$), starting from a
result of the definition of the exponential,
$$e^{1/n} > 1+1/n = (n+1)/n \Longrightarrow
\epsilon > 1/n > \log(n+1) - \log(n) = |s_n-s_{n+1}|.$$

\endproof

\item{b.} Bounded Pseudo-Cauchy sequences are convergent.

\intro{Disproof}
Consider $s_n = \log n,$ but modulated such that it ``bounces off'' the
bounds of the interval $(0,1),$ or more directly,
$s_n = |\log n\bmod 2-1|.$
\endproof

\item{c.} If $(x_n)$ and $(y_n)$ are pseudo-Cauchy, then $(x_n+y_n)$ is
Pseudo-Cauchy as well.

\proof
Let $\epsilon > 0.$ We must have $N$ and $M$ such that for all $n >
\max\{N,M\},$ for both sequences, $|x_n-x_{n+1}|<\epsilon/2$ and
$|y_n-y_{n+1}|<\epsilon/2.$
By the triangle inequality,
$$|x_n+y_n-x_{n+1}-y_{n+1}|<|x_n-x_{n+1}|+|y_n-y_{n+1}|<\epsilon.$$
\endproof

\question{Give an example of each or explain why the request is
impossible referencing the proper theorem(s).}

\item{a.} Two series $\sum x_n$ and $\sum y_n$ that both diverge but
where $\sum x_ny_n$ converges.

\intro{Example.}
Let $x_n = 1/n$ and $y_n = -1.$
\endproof

\item{b.} A convergent series $\sum x_n$ and a bounded sequence $(y_n)$
such that $\sum x_n y_n$ diverges.

\intro{Example.}
Let $x_n = (-1)^n 1/n$ and $y_n = (-1)^n.$
\endproof

\item{c.} Two sequences $(x_n)$ and $(y_n)$ where $x_n$ and $(x_n+y_n)$
both converge but $y_n$ diverges.

\intro{Disproof.}
If $x_n$ and $(x_n+y_n)$ converge, their difference should also
converge, their difference being $x_n+y_n-x_n = y_n.$
This is implied from the Algebraic Limit Theorem for Series.
\endproof

\item{d.} A sequence $(x_n)$ satisfying $0<x_n\leq 1/n$ where $\sum_n
(-1)^n x_n$ diverges.

\intro{Disproof.}
This converges by the Alternating Series Test.
\endproof

\bye