aboutsummaryrefslogtreecommitdiff
path: root/data.py
diff options
context:
space:
mode:
Diffstat (limited to 'data.py')
-rw-r--r--data.py179
1 files changed, 0 insertions, 179 deletions
diff --git a/data.py b/data.py
deleted file mode 100644
index 9aead79..0000000
--- a/data.py
+++ /dev/null
@@ -1,179 +0,0 @@
-# Data
-
-from scipy.spatial import Voronoi, voronoi_plot_2d, KDTree, distance
-import matplotlib.pyplot as plt
-
-class Pit:
- def __init__(self, loc, depth, diam):
- self.loc = loc
- self.depth = depth
- self.diam = diam
-
- def __repr__(self):
- return '%s @ %.1fcm deep, %.1fcm wide' % (str(self.loc), self.depth, self.diam)
-
- def disp(self):
- return '%.1fcm dp\n %.1fcm wd' % (self.depth, self.diam)
-
- def __getitem__(self,ind):
- return self.loc[ind]
-
-class Date:
- def __init__(self, year, month, day):
- self.year = year
- self.month = month
- self.day = day
-
- def __repr__(self):
- return '%d-%d-%d' % (self.year, self.month, self.day)
-
-class Trial:
- def __init__(self, date, intro, dead, size, pits):
- self.date = date
- self.intro = intro
- self.dead = dead
- self.size = size
- self.pits = pits
- self.pitlocs = [pit.loc for pit in self.pits]
-
- def __repr__(self):
- return str(self.date) + ' ' + str(self.pits)
-
- def plot(self, save=False):
- vor = Voronoi([pit.loc for pit in self.pits])
- voronoi_plot_2d(vor)
- plt.xlabel('%s (dimension %dx%dcm)' % (str(self.date), self.size[0], self.size[1]))
- if save:
- plt.savefig(str(self.date)+'.png', bbox_inches='tight')
- else:
- plt.show()
-
- def nearest_neighbor(self):
- tree = KDTree(self.pitlocs)
- sumnn = 0
- return [dists[1] for dists in tree.query(self.pitlocs,2)[0]]
-
-trials = [
- Trial(Date(2019, 10, 16), 31, 6, [33,32], [
- Pit([4,25],1.3,4.2),
- Pit([3,13],1.4,3.7),
- Pit([10,25],1.1,3.0),
- Pit([18,18],1.8,2.3),
- Pit([30,14],2.2,3.1),
- Pit([29,11],1.4,2.5),
- Pit([27,10],1.2,2.1),
- Pit([29,6],2.4,3.9),
- Pit([26,5],1.8,3.6),
- ]),
- Trial(Date(2019, 10, 30), 27, 3, [24,24], [
- Pit([4,21],2.0,7.0),
- Pit([7,22],2.5,4.1),
- Pit([2,9],0.5,2.0),
- Pit([12,18],1.2,2.5),
- Pit([12,11],1.2,3.0),
- Pit([20,11],1.0,3.0),
- Pit([19,2],1.5,4.0),
- ]),
- Trial(Date(2019, 12, 3), 19, 3, [17, 16], [
- Pit([14,5],1.3,4.1),
- Pit([12,2],1.2,3.8),
- Pit([5,1],0.9,3.2),
- Pit([15,17],2.2,3.8),
- Pit([12,17],1.2,2.5),
- Pit([7,17],2.0,5.0),
- Pit([1,17],1.8,3.6),
- ]),
- Trial(Date(2019, 12, 5), 10, 0, [17, 16], [
- Pit([17,4],1.3,3.1),
- Pit([10,4],1.5,3.1),
- Pit([16,9],1.4,2.9),
- ]),
- Trial(Date(2019, 12, 19), 12, 4, [8,7], [
- Pit([4,7],.8,.9),
- Pit([3,5],.9,.8),
- Pit([8,2],2,3),
- ]),
- Trial(Date(2019, 12, 20), 5, 0, [8,7], [
- Pit([6,7],.8,.8),
- Pit([2,2],.8,.8),
- Pit([8,6],.8,.8),
- Pit([2,9],.8,.8),
- ]),
-]
-
-from sys import argv
-from math import sqrt
-from numpy import poly1d, polyfit
-from scipy.stats import pearsonr
-from collections import Counter
-
-if len(argv) < 2:
- print('You must provide at least one argument to choose the function of this program: `img` or `nei` or `depwid')
- quit()
-
-arg = argv[1]
-
-if arg == 'img':
- for trial in trials:
- trial.plot(save=True)
-
-if arg == 'nei':
- x = []
- y = []
- for trial in trials:
- size = sqrt(trial.size[0]*trial.size[1])
- nei = trial.nearest_neighbor()
- #for n in range(len(nei)):
- # nei[n] += n*.05
- #x += [sqrt(trial.size[0]*trial.size[1])]*len(nei)
- #y += nei
- x.append(size)
- y.append(sum(nei)/len(nei))
- fig = plt.figure()
- ax = fig.add_subplot(111)
- plt.text(0.1, 0.9, 'R^2 = %.3f\np=%.3f' % (pearsonr(x,y)[0]**2, pearsonr(x,y)[1]), ha='center', va='center', transform=ax.transAxes)
- plt.xlabel('Square root of Trial Area (cm)')
- plt.ylabel('Nearest Neighbor for Individual Pits (cm)')
- plt.plot(x, y, 'bo')
- plt.plot(x, poly1d(polyfit(x, y, 1))(x))
- plt.savefig('nearest_neighbor.png', bbox_inches='tight')
-
-if arg == 'depwid':
- depths, widths, sizes = [], [], []
- for trial in trials:
- size = sqrt(trial.size[0]*trial.size[1])
- for pit in trial.pits:
- sizes.append(size)
- depths.append(pit.depth)
- widths.append(pit.diam)
- weights = [20*i for i in Counter(depths).values() for j in range(i)]
- plt.scatter([size-.5 for size in sizes], depths, weights, 'b','o', label='depth')
- weights = [20*i for i in Counter(widths).values() for j in range(i)]
- plt.scatter(sizes, widths, weights, 'r', 'o', label='width')
- plt.xlabel('Square root of Trial Area (cm)')
- plt.ylabel('Depth/Width of Antlion Pits (cm)')
- plt.legend(loc='upper right')
- plt.text(10, 7, 'R^2 = %.3f\np=%.3f' % (pearsonr(sizes,depths)[0], pearsonr(sizes,depths)[1]), ha='center', va='center')
- plt.savefig('depth_width.png', bbox_inches='tight')
-
-if arg == 'table':
- print('\\vtable{')
- table = ['Dimensions (in)', 'Pit Depth (cm)', 'Pit Width (cm)', 'Nearest Neighbor (cm)',''];
- lastsize = 0;
- for trial in trials:
- size = trial.size
- table[0] += '&\\multispan{' + str(len(trial.pits)) + '}\\vfil\\line{\\hfil' + '$\\times$'.join([str(el) for el in size]) + '\\hfil}\\vfil\\hrule'
- nei = trial.nearest_neighbor()
- for pitind in range(len(trial.pits)):
- pit = trial.pits[pitind]
- table[1] += '&' + '%.1f' % pit.depth
- table[2] += '&' + '%.1f' % pit.diam
- table[3] += '&' + '%.2f' % nei[pitind]
- print('\\cr\\noalign{\\vrule}\n'.join(table) + '}', end='');
-
-if arg == 'deathtable':
- print('\\table{')
- print('Trial Size& Date& Introduced& Deaths& Pits formed\\cr\\noalign{\\hrule}')
- for trial in trials:
- print('& '.join(['$\\times$'.join([str(el) for el in trial.size]), str(trial.date), str(trial.intro), str(trial.dead), str(len(trial.pits))])+'\\cr\\noalign{\\hrule}')
- print('}', end='')