1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
from data2 import trials
from statistics import stdev,mean
import matplotlib.pyplot as plt
from numpy import arange
stderr = []
avg = []
deps = {'nn':[[],[]], 'wid':[[],[]], 'dep':[[],[]], 'recl':[[],[]],
'dead':[[],[]]}
varlist = tuple(deps.keys())
title = {'nn':'Nearest Neighbor', 'wid':'Pit Width', 'dep':'Pit Depth',
'recl':'Reclusive Population', 'dead':'Cannibalized Individuals'}
names = []
plt.figure(figsize=(16,9))
def addvar(key, data):
deps[key][0].append(mean(data))
deps[key][1].append(stdev(data))
for trial in trials:
names.append(str(trial))
addvar('nn',trial.nearest_neighbor())
addvar('wid',[pit.diam for pit in trial.pits])
addvar('dep',[pit.depth for pit in trial.pits])
addvar('recl',[trial.recl for pit in trial.pits])
addvar('dead',[trial.dead for pit in trial.pits])
x = arange(len(names))
width = 0.8;
plt.xticks(x,labels=names)
plt.ylabel('Arbitrary Units')
print(names,avg)
#for var in varlist:
stdscale = 1/2
for ind in range(len(varlist)):
var = varlist[ind]
div = mean(deps[var][0])
plt.bar(x-ind*width/len(varlist)+width/2,
[dep/div for dep in deps[var][0]],
yerr=[stdscale*dep/div for dep in deps[var][1]], capsize=6,
label=title[var],alpha=0.5, width=width/len(varlist))
#plt.errorbar(names, [dep/div for dep in deps[var][0]],
#yerr=[dep/div/4 for dep in deps[var][1]], capsize=12, label=title[var], marker="o")
plt.legend()
plt.savefig('lineplot.png', bbox_inches='tight')
|