summaryrefslogtreecommitdiff
path: root/execsumm
diff options
context:
space:
mode:
Diffstat (limited to 'execsumm')
-rw-r--r--execsumm/ExecutiveSummaryDraft.tex41
1 files changed, 0 insertions, 41 deletions
diff --git a/execsumm/ExecutiveSummaryDraft.tex b/execsumm/ExecutiveSummaryDraft.tex
deleted file mode 100644
index 498aac9..0000000
--- a/execsumm/ExecutiveSummaryDraft.tex
+++ /dev/null
@@ -1,41 +0,0 @@
-\documentclass{article}
-\usepackage{hyperref}
-\usepackage[scr]{rsfso}
-\def\rload{R_{\rm load}}
-\date{}
-\begin{document}
-\title{Project Executive Summary}
-\author{Holden Rohrer and Nithya Jayakumar}
-
-\maketitle
-\section{Matrix Representation and Homogeneous Solution}
-
-To determine the relevant properties of the linear system, matrix form
-is useful (this form was chosen to reduce fractions' usage):
-\def\x{{\bf x}}
-$$\x' =
-{1\over R_1C_1C_2\rload}
-\pmatrix{0&-C_2\rload &0 \cr
- 0&-C_2(R_1+\rload)&C_1R_1\cr
- 0&C_2R_1 &-C_1R_1} \x +
-{1\over R_1}
-\pmatrix{\omega\cos(\omega t)\cr
- \omega\cos(\omega t)\cr
- 0}
-.$$
-\section{Application of Laplace Transformation}
-We can apply the Laplace Transformation in order to solve this system of differential equations.
-We have the three equations for $x'$, $y'$, and $z'$, and we can take the Laplace Transform of each of these equations"
-$$\mathscr{L}\{x' = \frac{-y}{C_1R_1} + \frac{\omega\cos(\omega t)}{R_1}\} \Rightarrow sX(s) - x(0) = \frac{Y(s)}{C_1R_1} + \frac{\omega s}{R_1(s^2 + \omega^2)}$$
-$$\mathscr{L}\{y' = y\frac{-R_1 - \rload}{R_1C_1\rload} + \frac{z}{C_2\rload} + \frac{\omega\cos(\omega t)}{R_1} \} \Rightarrow sY(s) - y(0) = Y(s)(\frac{-R_1-\rload}{R_1C_1\rload}) + \frac{Z(s)}{C_2\rload} + \frac{\omega s}{R_1(s^2 + \omega^2)}$$
-$$\mathscr{L}\{z' = \frac{y}{C_1\rload} - \frac{z}{C_2\rload} \} \Rightarrow sZ(s) - z(0) = \frac{Y(s)}{C_1\rload} - \frac{Z(s)}{C_2\rload}$$
-
-The last two equations we get can be used to solve for $Z(s)$, which we find to be $$Z(s) = \frac{\omega s(C_1C_2\rload^2)}{(s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)}$$
-
-We can now find the partial fraction decomposition of this:
-$$Z(s) = \frac{\omega s(C_1C_2\rload^2)}{(s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)} = $$ $$\frac{As + B}{s^2 + \omega^2} + \frac{Cs + D}{(s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)} = \omega sC_1C_2\rload^2$$
-To simplify notation, let $b = (s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)$
-We find that $$A = \frac{C_1C_2\rload^2\omega (\rload - \omega^2)}{b^2\omega^2 + \rload^2 - 2\rload - 2\rload\omega^2 + \omega^2}$$
-$$B = \frac{bC_1C_2\rload^2\omega^3}{b^2\omega^2 + \rload^2 - 2\rload\omega^2 + \omega^4}$$
-$$C = \frac{-C_1C_2\rload^2\omega(\rload - \omega^2)}{b^2\omega^2 + \rload^2 - 2\rload\omega^2 + \omega^4}$$
-\end{document} \ No newline at end of file