aboutsummaryrefslogtreecommitdiff
path: root/lacey/hw2.tex
blob: c553b8c87164e76a37f8a2b5977347bd524ab8fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
\font\bigbf=cmbx12 at 24pt
\newfam\bbold
\font\bbten=msbm10
\font\bbsev=msbm7
\font\bbfiv=msbm5
\textfont\bbold=\bbten
\scriptfont\bbold=\bbsev
\scriptscriptfont\bbold=\bbfiv
\def\bb#1{{\fam\bbold #1}}

\newcount\pno
\def\tf{\advance\pno by 1\smallskip\bgroup\item{(\number\pno)}}
\def\endtf{\egroup\medskip}

\newcount\qno
\long\def\question#1{\ifnum\qno=0\else\vfil\eject\fi\bigskip\pno=0\advance\qno by 1\noindent{\bf Question \number\qno.} {\it #1}}

\def\proof{\medskip\noindent{\it Proof.}\quad}
\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt
depth 0pt{\parfillskip0pt\medskip}}

\let\bu\bullet

{\bigbf\centerline{Holden Rohrer}\bigskip\centerline{MATH 4317\qquad HOMEWORK \#2}}

\noindent{\bf Definition.} For any set $A,$ finite or infinite, define
the power set of $A$ to be the collection of all subsets of $A.$ That
is,
$${\cal P}(A) = \{A' : A'\subseteq A\}.$$

\noindent{\bf Definition.} A set $A\subseteq\bb R$ is dense if for all
$a\neq b\in\bb R,$ there is an element $c\in A$ between $a$ and $b.$

\question{For each item, if it is a true statement, say so. Otherwise,
give a counterexample.}

\tf
A decreasing nested sequence of bounded intervals has non empty
intersection.
\endtf

False.
This fails if they are bounded and open;
for example, $A_n = (0,{1\over n}].$

\tf
A decreasing nested sequence of closed intervals has non-empty
intersection.
\endtf

True.

\tf
For reals $a < b,$ we have $\sup Q\cap [a,b] = b.$
\endtf

True.

\tf
For reals $a < b,$ we have $\sup Q^c\cap [a,b] = b.$
\endtf

True.

\tf
The rationals are dense.
\endtf

True.

\tf
The subset of the rationals $\{p/2^r | p\in\bb Z,
r\in\{100,101,\ldots\}\}$ are dense.
\endtf

True. % i feel like i want to write a proof.

\tf
The subset of the rationals $\{p/2^r | p\in\bb Z,
r\in\{1,2,\ldots,100\}\}$ are dense.
\endtf

False. Between 0 and $1/2^{100},$ there is no number in this set.

\tf
The set $\{\pi r|r\in\bb Q\}$ is dense.
\endtf

True.

\question{Prove that there is a positive number $s$ such that $s^2 = 3.$
\item{$\bu$} This depends upon the Supremum Axiom of course, applied to
a good set $S.$
\item{$\bu$} Letting $\sigma = \sup S,$ there are two cases which need
to lead to a contradiction: $\sigma^2 < 3$ and $\sigma^2 > 3.$
\item{$\bu$} You could find it useful to note that $1.7^2<3,$ but only
just barely. (But it is not necessary, either)
}

\proof
Let $S = \{s\in\bb R|s^2 < 3\}.$

2 is an upper bound of $S.$

For the sake of contradiction, let $s\in S$ s.t. $s>2.$
Then, $s^2>4>3,$ contradicting our definition of $S.$

By the supremum axiom, this upper-bounded set must have a supremum
$\sigma = \sup S.$

If $\sigma^2 < 3,$
we must have $s>0\in\bb R$ such that $\sigma^2<s^2<3,$ (by density of
the reals) meaning $s\in S$ and $s>\sigma,$ so $\sigma$ is not the
supremum. % TODO: check if we can sorta assume continuity of s^2 like
% this (probably ask Lacey)

If $\sigma^2 > 3,$ choose $s>0$ such that $3 < s^2 < \sigma^2,$ and
let $\epsilon = \sigma-s > 0.$
From a property of the supremum, we must have $a\in S$ such that
$a>\sigma-\epsilon=s.$
We already know $s^2 > 3,$ so $a^2 > 3$, contradicting our construction.

We have thus determined $\sigma^2 = 3,$ proving there is such a positive
real number.
\endproof

\question{Show that these statements are equivalent: for a sequence of
reals $\{x_n\},$
\item{$(1)$} The sequence converges to $x$: for all $\epsilon > 0,$
there is a $N_\epsilon > 1$ so that for all $n > N_\epsilon,$
$|x_n-x|<\epsilon.$
\item{$(2)$} For all $\epsilon > 0,$ there is a $N_\epsilon > 1$ so that
for all $n>N_\epsilon,$ $|x_n-x|<100\epsilon.$
\item{$(3)$} For all $0<\epsilon<10^{-10}$ there is a $N_\epsilon > 1$
so that for all $n>N_\epsilon,$ $|x_n-x|<\epsilon.$
\item{$(4)$} For all $\epsilon > 0$ there is a $N_\epsilon > 10^{10}$ so
that for all $n>N_\epsilon,$ $|x_n-x|<\epsilon.$
}

\proof
We will prove these in a loop.

\smallskip
$(1)\Rightarrow(2)$
\smallskip

For all $\epsilon>0,$ there is a $N_\epsilon>1$ so that for all
$n>N_\epsilon,$ $|x_n-x|<\epsilon<100\epsilon,$ satisfying our
condition.

\smallskip
$(2)\Rightarrow(3)$
\smallskip

We will show for all $0<\epsilon<10^{-10},$ there is a $N_\epsilon>1$ so
that for all $n>N_\epsilon,$ $|x_n-x|<\epsilon.$

Select some $0<\epsilon/100<10^{-12}$ and $N_{\epsilon}$ satisfying
$(2)$.
Then, for all $n>N_\epsilon,$ $|x_n-x|<100(\epsilon/100)=\epsilon,$
satisfying $(3).$

\smallskip
$(3)\Rightarrow(4)$
\smallskip

Let $\epsilon>0.$
Account for where $\epsilon > 10^{-11},$ we take instead $N_\epsilon>1$
such that for all $n>N_\epsilon,$ $|x_n-x| < \min\{10^{-11},\epsilon\}
\leq \epsilon.$

If $N_\epsilon<10^{10},$ the result implies
$M_\epsilon>10^{10}>N_\epsilon$ such that for all
$n>M_\epsilon>N_\epsilon,$ $|x_n-x|<\epsilon.$

\smallskip
$(4)\Rightarrow(1)$
\smallskip

Let $\epsilon > 0.$ We have $N_\epsilon > 10^{10} > 1$ such that for all
$n>N_\epsilon,$ $|x_n-x|<\epsilon.$
This satisfies $(1).$

\endproof

\question{Let $A$ be a nonempty set of positive real numbers, that is
bounded above. Set $B = \{1/a : a\in A\}.$ Prove that $B$ is bounded
below, and that
$$\inf B = {1\over\sup A}.$$
}

\proof

All members of $A$ are positive, so $1/a>0$ for all $a\in A,$ giving a
lower bound for $B.$
By the supremum axiom, there is an infimum $b$ for $B.$

We know that for all $a\in A,$ $b\leq 1/a,$ and for all $\epsilon>0$ and
some respective $c\in A,$ that $1/c<b+\epsilon.$

$1/b\geq a,$ so we know $b\geq\sup A.$
Then, $$c > {1\over b+\epsilon} = {1\over b} + {\epsilon\over
b(b+\epsilon)},$$
of which the error can be reduced to tell us that ${1\over b} = \sup A.$

\endproof

\question{Let $A = \{a_n|n\in\bb N\}$ and $B = \{b_n|n\in\bb N\}$ be two
bounded sets in $\bb R.$ Show that
$$\inf_m a_m + \inf_n b_n \leq \inf_n(a_n + b_n).$$
$$\inf_m a_m + \inf_n b_n = \inf_{m,n} a_m + b_n.$$
}

\proof
We will show the equality first.
Let $a$ and $b$ refer to the infima of $A$ and $B$ respectively.
Let $\epsilon > 0.$
From our definition of infima, we have $m,n\in\bb N$ such that
$a_n < a + \epsilon$ and $b_m < b + \epsilon.$
Thus, $a_n+b_m < a+b+2\epsilon.$
And for all $o,p\in\bb N,$
we have $a \leq a_o$ and $b \leq b_p,$ so $a+b\leq a_o+b_p,$
meaning our infimum $c$ satisfies $a+b\leq c<a+b+2\epsilon,$ so $c =
a+b.$

The inequality is then trivially implied since $\{a_n+b_n:n\in\bb
N\}\subseteq \{a_n+b_m:n,m\in\bb N\},$ so the infimum of the former is
less than or equal to all elements of the latter, and thus forms a lower
bound less than or equal to the infimum of the latter.
\endproof

\question{This concerns the power set, defined above.
\item{$(1)$} What is the power set of the empty set, ${\cal
P}(\emptyset)?$
\item{$(2)$} Find a formula for the cardinality of ${\cal
P}(\{1,2,\ldots,n\})$ for $n=1,2,3,\ldots$ Prove the formula, using
mathematical induction.

\noindent Recall that the mathematical induction is a two step procedure,
requiring
\item{$(1)$} Establish the proposition in a base case, $n=1$ in this
case.
\item{$(2)$} Assuming the proposition true for integer $n\geq 1,$ show
that it is true for $n+1.$
}

\proof
${\cal P}(\emptyset) = \{\emptyset\}.$

This is the $n=0$ case of ${\cal P}(\{1,2,\ldots,n\}),$ and it has
cardinality $1 = 2^0.$

To show the inductive case, assume that $|{\cal P}(\{1,2,\ldots,n\})|=2^n.$

${\cal P}(\{1,2,\ldots,n,n+1\}) = {\cal P}(\{1,2,\ldots,n\})\cup\{x\cup\{n+1\} :
x\in{\cal P}(\{1,2,\ldots,n\})\},$
so its cardinality is $2^{n+1},$ showing the inductive case.

These sets are disjoint because none of the left ones and all of the
right ones have the element $n+1,$ and each have cardinality $2^n,$ and
this enumerates all subsets of $\{1,2,\ldots,n\}$ which are subsets of
$\{1,2,\ldots,n,n+1\},$ and the subsets which include $n+1.$

\endproof

\question{Find bijections for the following functions.
\item{$(2)$} Find a bijection between $(0,1)$ and $[0,1).$
\item{$(3)$} Find a bijection between $(0,1)$ and $(0,1)\cup\bb N.$
}

\tf (Hilbert Hotel) Find a bijection between $\bb Z$ and $\{1/2\}\cup\bb
Z.$
\endtf

Let $f: \bb Z\to\{1/2\}\cup\bb Z.$

For $z>1,$ $f(z) = z-1.$
For $z=0,$ $f(z) = 1/2.$
For $z<0,$ $f(z) = z.$

\tf Find a bijection between $(0,1)$ and $[0,1).$
\endtf
Let $f: [0,1)\to(0,1)$
where $f(0) = 1/2,$ and where $n\in\bb N^{\geq 2},$
$f(1/n)={1\over n+1},$ and $f(x) = x$ otherwise.

\tf Find a bijection between $(0,1)$ and $(0,1)\cup\bb N.$
\endtf
Let $f: (0,1)\cup\bb N\to(0,1).$

If $n\in\bb N,$ $f(n) = {1\over 2^{n+1}},$ and for $m,l\in\bb N,$
$f({1\over 2^m3^l}) = {1\over 2^m3^{l+1}},$ and $f(x) = x$ otherwise.

\bye